Home > Algebra calculators > If a/b=c/d=e/f then prove that (2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f) example

Ratio and Proportion - 3. If `a/b=c/d=e/f` then prove that `(2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)` example ( Enter your problem )
  1. Examples
Other related methods
  1. If `a:b:c=2:3:5` then find value of `(a^2+b^2+c^2)/(ab+bc+ca)`
  2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
  3. If `a/b=c/d=e/f` then prove that `(2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)`
  4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
  5. Geometric Mean
  6. Duplicate ratio
  7. Triplicate ratio
  8. Sub-Duplicate ratio
  9. Sub-Triplicate ratio
  10. Compounded ratio
  11. Mean proportional
  12. Third proportional
  13. Fourth proportional
  14. Compare ratios

2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
(Previous method)
4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
(Next method)

1. Examples





1. If `a/b=c/d=e/f` then prove that `(2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)`

Solution:
`a/b=c/d=e/f`

Suppose, `a/b=c/d=e/f=k` (say)

`:. a=bk,c=dk,e=fk`

Now LHS`=(2a+3c-4e)/(2b+3d-4f)`

`=(2bk+3dk-4fk)/(2b+3d-4f)`

`=(k(2b+3d-4f))/(2b+3d-4f)`

`"Now cancel the common factor "(2b+3d-4f)`

`=k`

Now RHS`=(5a-4c+3e)/(5b-4d+3f)`

`=(5bk-4dk+3fk)/(5b-4d+3f)`

`=(k(5b-4d+3f))/(5b-4d+3f)`

`"Now cancel the common factor "(5b-4d+3f)`

`=k`


2. If `x/(b^2-c^2)=y/(c^2-a^2)=z/(a^2-b^2)` then prove that `x+y+z=0`

Solution:
`x/(b^2-c^2)=y/(c^2-a^2)=z/(a^2-b^2)`

Suppose, `x/(b^2-c^2)=y/(c^2-a^2)=z/(a^2-b^2)=k` (say)

`:. x=b^2k-c^2k,y=c^2k-a^2k,z=a^2k-b^2k`

Now LHS`=x+y+z`

`=(b^2k-c^2k)+(c^2k-a^2k)+(a^2k-b^2k)`

`=0`

`=`RHS




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
(Previous method)
4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.