Find 7 divided by 6 using restoring division Algorithm method
Solution:
Dividend = 7
Divisor = 6
First the registers are initialized with corresponding values (Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend)
n | M | A | Q | Operation |
3 | 0110 | 0000 | 111 | initialize |
3 | 0110 | 0001 | 11_ | shift left AQ |
| 0110 | 1101 | 11_ | A=A-M |
| 0110 | 0001 | 110 | Q[0]=0 And restore A |
2 | 0110 | 0011 | 10_ | shift left AQ |
| 0110 | 1111 | 10_ | A=A-M |
| 0110 | 0011 | 100 | Q[0]=0 And restore A |
1 | 0110 | 0111 | 00_ | shift left AQ |
| 0110 | 0001 | 00_ | A=A-M |
| 0110 | 0001 | 001 | Q[0]=1 |
register Q contain the quotient 1 and register A contain remainder 1
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then