1. Find `(2*10^-5) / (8*10^4)`
Solution:
`(2*10^-5) / (8*10^4)` | |
`=(2/8) xx ((10^-5)/(10^4))` | (Group the numbers) |
`=0.25 xx (10^(-5 - 4))` | `("law of indices "a^m/a^n=a^(m-n))` |
`=0.25xx10^-9` | |
`=(2.5xx10^-1)xx10^-9` | (Write 0.25 in scientific notation) |
`=2.5xx10^-10` | |
2. Find `(2.4*10^7) / (4.8*10^4)`
Solution:
`(2.4*10^7) / (4.8*10^4)` | |
`=(2.4/4.8) xx ((10^7)/(10^4))` | (Group the numbers) |
`=0.5 xx (10^(7 - 4))` | `("law of indices "a^m/a^n=a^(m-n))` |
`=0.5xx10^3` | |
`=(5xx10^-1)xx10^3` | (Write 0.5 in scientific notation) |
`=5xx10^2` | |
3. Find `(3*10^7) / (4*10^4)`
Solution:
`(3*10^7) / (4*10^4)` | |
`=(3/4) xx ((10^7)/(10^4))` | (Group the numbers) |
`=0.75 xx (10^(7 - 4))` | `("law of indices "a^m/a^n=a^(m-n))` |
`=0.75xx10^3` | |
`=(7.5xx10^-1)xx10^3` | (Write 0.75 in scientific notation) |
`=7.5xx10^2` | |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then