Home > Statistical Methods calculators > Mean, Median and Mode for grouped data example

Mean, Median and Mode for grouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

2. Mean Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum fx)/n`
2. Median `M = L + (n/2 - cf)/f * c`
3. Mode `Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

Examples
1. Calculate Mean, Median, Mode from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`cf`
`(6)`
2-43 3 `3=(2+4)/2` 9 `9=3xx3`
`(4)=(2)xx(3)`
 3 `3=0+3`
`(6)=`Previous `(6)+(2)`
4-64 5 `5=(4+6)/2` 20 `20=4xx5`
`(4)=(2)xx(3)`
 7 `7=3+4`
`(6)=`Previous `(6)+(2)`
6-82 7 `7=(6+8)/2` 14 `14=2xx7`
`(4)=(2)xx(3)`
 9 `9=7+2`
`(6)=`Previous `(6)+(2)`
8-101 9 `9=(8+10)/2` 9 `9=1xx9`
`(4)=(2)xx(3)`
 10 `10=9+1`
`(6)=`Previous `(6)+(2)`
---------------
--`n = 10`--`sum f*x=52`--


Mean `bar x = (sum fx)/n`

`=52/10`

`=5.2`



To find Median Class
= value of `(n/2)^(th)` observation

= value of `(10/2)^(th)` observation

= value of `5^(th)` observation

From the column of cumulative frequency `cf`, we find that the `5^(th)` observation lies in the class `4 - 6`.

`:.` The median class is `4 - 6`.

Now,
`:. L = `lower boundary point of median class `=4`

`:. n = `Total frequency `=10`

`:. cf = `Cumulative frequency of the class preceding the median class `=3`

`:. f = `Frequency of the median class `=4`

`:. c = `class length of median class `=2`

Median `M = L + (n/2 - cf)/f * c`

`=4 + (5 - 3)/4 * 2`

`=4 + (2)/4 * 2`

`=4 + 1`

`=5`



To find Mode Class
Here, maximum frequency is `4`.

`:.` The mode class is `4 - 6`.

`:. L = `lower boundary point of mode class `=4`

`:. f_1 = ` frequency of the mode class `=4`

`:. f_0 = ` frequency of the preceding class `=3`

`:. f_2 = ` frequency of the succedding class `=2`

`:. c = ` class length of mode class `=2`

`Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

`=4 + ((4 - 3)/(2*4 - 3 - 2)) * 2`

`=4 + (1/3) * 2`

`=4 + 0.6667`

`=4.6667`
2. Calculate Mean, Median, Mode from the following grouped data
XFrequency
01
15
210
36
43


Solution:
`x`
`(1)`
Frequency `(f)`
`(2)`
`f*x`
`(3)=(2)xx(1)`
`cf`
`(5)`
01 0 `0=1xx0`
`(3)=(2)xx(1)`
 1 `1=0+1`
`(5)=`Previous `(5)+(2)`
15 5 `5=5xx1`
`(3)=(2)xx(1)`
 6 `6=1+5`
`(5)=`Previous `(5)+(2)`
210 20 `20=10xx2`
`(3)=(2)xx(1)`
 16 `16=6+10`
`(5)=`Previous `(5)+(2)`
36 18 `18=6xx3`
`(3)=(2)xx(1)`
 22 `22=16+6`
`(5)=`Previous `(5)+(2)`
43 12 `12=3xx4`
`(3)=(2)xx(1)`
 25 `25=22+3`
`(5)=`Previous `(5)+(2)`
------------
`n=25``sum f*x=55`--


Mean `bar x = (sum fx)/n`

`=55/25`

`=2.2`



Median :
M = value of `(n/2)^(th)` observation

= value of `(25/2)^(th)` observation

= value of `12^(th)` observation

From the column of cumulative frequency `cf`, we find that the `12^(th)` observation is `2`.

Hence, the median of the data is `2`.



Mode :
the frequency of observation `2` is maximum (`10`)

`:. Z = 2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.