Home > Statistical Methods calculators > Quartile, Decile, Percentile, Octile, Quintile for grouped data example

Quartile, Decile, Percentile, Octile, Quintile for grouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Quartile Example
  3. Decile Example
  4. Percentile Example
  5. Octile Example
  6. Quintile Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

1. Mean, Median and Mode
(Previous method)
2. Quartile Example
(Next example)

1. Formula & Example





Formula
1. Quartile
`Q_i` class = `((i n)/4)^(th)` value of the observation
`Q_i = L + ((i n)/4 - cf)/f * c`, where i=1,2,3
2. Deciles
`D_i` class = `((i n)/10)^(th)` value of the observation
`D_i = L + ((i n)/10 - cf)/f * c`, where i=1,2,3, ..., 9
3. Percentiles
`P_i` class = `((i n)/100)^(th)` value of the observation
`P_i = L + ((i n)/100 - cf)/f * c`, where i=1,2,3, ..., 99

Examples
1. Calculate Quartile-3, Deciles-7, Percentiles-20 from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
ClassFrequency
`f`
`cf`
2 - 433
4 - 647
6 - 829
8 - 10110
---------
n = 10--


Here, `n = 10`


`Q_3` class :

Class with `((3n)/4)^(th)` value of the observation in `cf` column

`=((3*10)/4)^(th)` value of the observation in `cf` column

`=(7.5)^(th)` value of the observation in `cf` column

and it lies in the class `6 - 8`.

`:. Q_3` class : `6 - 8`

The lower boundary point of `6 - 8` is `6`.

`:. L = 6`

`Q_3 = L + ((3 n)/4 - cf)/f * c`

`=6 + (7.5 - 7)/2 * 2`

`=6 + (0.5)/2 * 2`

`=6 + 0.5`

`=6.5`




`D_7` class :

Class with `((7n)/10)^(th)` value of the observation in `cf` column

`=((7*10)/10)^(th)` value of the observation in `cf` column

`=(7)^(th)` value of the observation in `cf` column

and it lies in the class `4 - 6`.

`:. D_7` class : `4 - 6`

The lower boundary point of `4 - 6` is `4`.

`:. L = 4`

`D_7 = L + ((7 n)/10 - cf)/f * c`

`=4 + (7 - 3)/4 * 2`

`=4 + (4)/4 * 2`

`=4 + 2`

`=6`




`P_20` class :

Class with `((20n)/100)^(th)` value of the observation in `cf` column

`=((20*10)/100)^(th)` value of the observation in `cf` column

`=(2)^(th)` value of the observation in `cf` column

and it lies in the class `2 - 4`.

`:. P_20` class : `2 - 4`

The lower boundary point of `2 - 4` is `2`.

`:. L = 2`

`P_20 = L + ((20 n)/100 - cf)/f * c`

`=2 + (2 - 0)/3 * 2`

`=2 + (2)/3 * 2`

`=2 + 1.3333`

`=3.3333`
2. Calculate Quartile-3, Deciles-7, Percentiles-20 from the following grouped data
XFrequency
01
15
210
36
43


Solution:
`x`Frequency
`f`
`cf`
011
156
21016
3622
4325
---------
n = 25--


Here, `n = 25`

`Q_3 = ((3(n+1))/4)^(th)` value of the observation

`=((3*26)/4)^(th)` value of the observation

`=(19.5)^(th)` value of the observation

`=3`



`D_7 = ((7(n+1))/10)^(th)` value of the observation

`=((7*26)/10)^(th)` value of the observation

`=(18.2)^(th)` value of the observation

`=3`



`P_20 = ((20(n+1))/100)^(th)` value of the observation

`=((20*26)/100)^(th)` value of the observation

`=(5.2)^(th)` value of the observation

`=1`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Mean, Median and Mode
(Previous method)
2. Quartile Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.