1. Calculate Octile-5 from the following grouped data
Solution:`x` | Frequency `f` | `cf` |
0 | 1 | 1 |
1 | 5 | 6 |
2 | 10 | 16 |
3 | 6 | 22 |
4 | 3 | 25 |
--- | --- | --- |
| `n = 25` | -- |
Here, `n = 25`
`"Octile"_5 = ((5(n+1))/8)^(th)` value of the observation
`=((5*26)/8)^(th)` value of the observation
`=(16.25)^(th)` value of the observation
`=3`
2. Calculate Octile-3 from the following grouped data
X | Frequency |
10 | 3 |
11 | 12 |
12 | 18 |
13 | 12 |
14 | 3 |
Solution:`x` | Frequency `f` | `cf` |
10 | 3 | 3 |
11 | 12 | 15 |
12 | 18 | 33 |
13 | 12 | 45 |
14 | 3 | 48 |
--- | --- | --- |
| `n = 48` | -- |
Here, `n = 48`
`"Octile"_3 = ((3(n+1))/8)^(th)` value of the observation
`=((3*49)/8)^(th)` value of the observation
`=(18.375)^(th)` value of the observation
`=12`
3. Calculate Octile-3 from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:Class | Frequency `f` | `cf` |
2 - 4 | 3 | 3 |
4 - 6 | 4 | 7 |
6 - 8 | 2 | 9 |
8 - 10 | 1 | 10 |
--- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`"Octile"_3` class :
Class with `((3n)/8)^(th)` value of the observation in `cf` column
`=((3*10)/8)^(th)` value of the observation in `cf` column
`=(3.75)^(th)` value of the observation in `cf` column
and it lies in the class `4 - 6`.
`:. "Octile"_3` class : `4 - 6`
The lower boundary point of `4-6` is `4`.
`:. L=4`
`"Octile"_3=L+((3 n)/8 - cf)/f * c`
`=4+(3.75-3)/4*2`
`=4+(0.75)/4*2`
`=4+0.375`
`=4.375`
4. Calculate Octile-6 from the following grouped data
Class | Frequency |
0 - 2 | 5 |
2 - 4 | 16 |
4 - 6 | 13 |
6 - 8 | 7 |
8 - 10 | 5 |
10 - 12 | 4 |
Solution:Class | Frequency `f` | `cf` |
0 - 2 | 5 | 5 |
2 - 4 | 16 | 21 |
4 - 6 | 13 | 34 |
6 - 8 | 7 | 41 |
8 - 10 | 5 | 46 |
10 - 12 | 4 | 50 |
--- | --- | --- |
| `n = 50` | -- |
Here, `n = 50`
`"Octile"_6` class :
Class with `((6n)/8)^(th)` value of the observation in `cf` column
`=((6*50)/8)^(th)` value of the observation in `cf` column
`=(37.5)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. "Octile"_6` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`"Octile"_6=L+((6 n)/8 - cf)/f * c`
`=6+(37.5-34)/7*2`
`=6+(3.5)/7*2`
`=6+1`
`=7`
5. Calculate Octile-6 from the following grouped data
Class | Frequency |
10 - 20 | 15 |
20 - 30 | 25 |
30 - 40 | 20 |
40 - 50 | 12 |
50 - 60 | 8 |
60 - 70 | 5 |
70 - 80 | 3 |
Solution:Class | Frequency `f` | `cf` |
10 - 20 | 15 | 15 |
20 - 30 | 25 | 40 |
30 - 40 | 20 | 60 |
40 - 50 | 12 | 72 |
50 - 60 | 8 | 80 |
60 - 70 | 5 | 85 |
70 - 80 | 3 | 88 |
--- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`"Octile"_6` class :
Class with `((6n)/8)^(th)` value of the observation in `cf` column
`=((6*88)/8)^(th)` value of the observation in `cf` column
`=(66)^(th)` value of the observation in `cf` column
and it lies in the class `40 - 50`.
`:. "Octile"_6` class : `40 - 50`
The lower boundary point of `40-50` is `40`.
`:. L=40`
`"Octile"_6=L+((6 n)/8 - cf)/f * c`
`=40+(66-60)/12*10`
`=40+(6)/12*10`
`=40+5`
`=45`
6. Calculate Octile-3 from the following grouped data
Class | Frequency |
10 - 20 | 15 |
20 - 30 | 25 |
30 - 40 | 20 |
40 - 50 | 12 |
50 - 60 | 8 |
60 - 70 | 5 |
70 - 80 | 3 |
Solution:Class | Frequency `f` | `cf` |
10 - 20 | 15 | 15 |
20 - 30 | 25 | 40 |
30 - 40 | 20 | 60 |
40 - 50 | 12 | 72 |
50 - 60 | 8 | 80 |
60 - 70 | 5 | 85 |
70 - 80 | 3 | 88 |
--- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`"Octile"_3` class :
Class with `((3n)/8)^(th)` value of the observation in `cf` column
`=((3*88)/8)^(th)` value of the observation in `cf` column
`=(33)^(th)` value of the observation in `cf` column
and it lies in the class `20 - 30`.
`:. "Octile"_3` class : `20 - 30`
The lower boundary point of `20-30` is `20`.
`:. L=20`
`"Octile"_3=L+((3 n)/8 - cf)/f * c`
`=20+(33-15)/25*10`
`=20+(18)/25*10`
`=20+7.2`
`=27.2`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then