Formula
1. Mean `bar x = (sum fx)/n`
|
2. Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`
|
3. Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
|
4. Coefficient of Variation (Sample) `=S / bar x * 100 %`
|
Examples
1. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:
Class `(1)` | Frequency `(f)` `(2)` | Mid value `(x)` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2=(f*x)xx(x)` `(5)=(4)xx(3)` |
2-4 | 3 | 3 `3=(2+4)/2` | 9 `9=3xx3` `(4)=(2)xx(3)` | 27 `27=9xx3` `(5)=(4)xx(3)` |
4-6 | 4 | 5 `5=(4+6)/2` | 20 `20=4xx5` `(4)=(2)xx(3)` | 100 `100=20xx5` `(5)=(4)xx(3)` |
6-8 | 2 | 7 `7=(6+8)/2` | 14 `14=2xx7` `(4)=(2)xx(3)` | 98 `98=14xx7` `(5)=(4)xx(3)` |
8-10 | 1 | 9 `9=(8+10)/2` | 9 `9=1xx9` `(4)=(2)xx(3)` | 81 `81=9xx9` `(5)=(4)xx(3)` |
--- | --- | --- | --- | --- |
-- | `n = 10` | -- | `sum f*x=52` | `sum f*x^2=306` |
Mean `bar x = (sum fx)/n`
`=52/10`
`=5.2`
Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`
`=(306 - (52)^2/10)/9`
`=(306 - 270.4)/9`
`=35.6/9`
`=3.9556`
Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
`=sqrt((306 - (52)^2/10)/9)`
`=sqrt((306 - 270.4)/9)`
`=sqrt(35.6/9)`
`=sqrt(3.9556)`
`=1.9889`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=1.9889/5.2 * 100 %`
`=38.25 %`
2. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following grouped data
Solution:
`x` `(1)` | Frequency `(f)` `(2)` | `f*x` `(3)=(2)xx(1)` | `f*x^2=(f*x)xx(x)` `(4)=(3)xx(1)` |
0 | 1 | 0 `0=1xx0` `(3)=(2)xx(1)` | 0 `0=0xx0` `(4)=(3)xx(1)` |
1 | 5 | 5 `5=5xx1` `(3)=(2)xx(1)` | 5 `5=5xx1` `(4)=(3)xx(1)` |
2 | 10 | 20 `20=10xx2` `(3)=(2)xx(1)` | 40 `40=20xx2` `(4)=(3)xx(1)` |
3 | 6 | 18 `18=6xx3` `(3)=(2)xx(1)` | 54 `54=18xx3` `(4)=(3)xx(1)` |
4 | 3 | 12 `12=3xx4` `(3)=(2)xx(1)` | 48 `48=12xx4` `(4)=(3)xx(1)` |
--- | --- | --- | --- |
| `n=25` | `sum f*x=55` | `sum f*x^2=147` |
Mean `bar x = (sum fx)/n`
`=55/25`
`=2.2`
Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`
`=(147 - (55)^2/25)/24`
`=(147 - 121)/24`
`=26/24`
`=1.0833`
Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
`=sqrt((147 - (55)^2/25)/24)`
`=sqrt((147 - 121)/24)`
`=sqrt(26/24)`
`=sqrt(1.0833)`
`=1.0408`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=1.0408/2.2 * 100 %`
`=47.31 %`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then