Formula
|
1. Sample Standard deviation `S = sqrt((sum f*(x - bar x)^2)/(n-1))`
|
|
2. Skewness `= (sum f*(x - bar x)^3)/((n-1)*S^3)`
|
|
3. Kurtosis `= (sum f*(x - bar x)^4)/((n-1)*S^4)`
|
Examples
1. Calculate Sample Skewness, Sample Kurtosis from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:Skewness,Kurtosis :Mean `bar x=(sum f x)/(sum f)`
`=52/10`
`=5.2`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)` `(6)=(3)xx(5)` | `f*(x-bar x)^2` `(7)=(5)xx(6)` | `f*(x-bar x)^3` `(8)=(5)xx(7)` | `f*(x-bar x)^4` `(9)=(5)xx(8)` |
| 2 - 4 | 3 | 3 | 9 | -2.2 | -6.6 | 14.52 | -31.944 | 70.2768 |
| 4 - 6 | 5 | 4 | 20 | -0.2 | -0.8 | 0.16 | -0.032 | 0.0064 |
| 6 - 8 | 7 | 2 | 14 | 1.8 | 3.6 | 6.48 | 11.664 | 20.9952 |
| 8 - 10 | 9 | 1 | 9 | 3.8 | 3.8 | 14.44 | 54.872 | 208.5136 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=10` | `sum f*x=52` | -- | `=0` | `=35.6` | `=34.56` | `=299.792` |
Sample Standard deviation `S = sqrt((sum f*(x - bar x)^2)/(n-1))`
`=sqrt(35.6/9)`
`=sqrt(3.9556)`
`=1.9889`
Sample Skewness `= (sum f*(x - bar x)^3)/((n-1)*S^3)`
`=34.56/(9*(1.9889)^3)`
`=34.56/(9*7.867)`
`=0.4881`
Sample Kurtosis `= (sum f*(x - bar x)^4)/((n-1)*S^4)`
`=299.792/(9*(1.9889)^4)`
`=299.792/(9*15.6464)`
`=2.1289`
2. Calculate Sample Skewness, Sample Kurtosis from the following grouped data
Solution:Skewness,Kurtosis :Mean `bar x=(sum f x)/n`
`=55/25`
`=2.2`
`x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)` `(6)=(3)xx(5)` | `f*(x-bar x)^2` `(7)=(5)xx(6)` | `f*(x-bar x)^3` `(8)=(5)xx(7)` | `f*(x-bar x)^4` `(9)=(5)xx(8)` |
| 0 | 1 | 0 | -2.2 | -2.2 | 4.84 | -10.648 | 23.4256 |
| 1 | 5 | 5 | -1.2 | -6 | 7.2 | -8.64 | 10.368 |
| 2 | 10 | 20 | -0.2 | -2 | 0.4 | -0.08 | 0.016 |
| 3 | 6 | 18 | 0.8 | 4.8 | 3.84 | 3.072 | 2.4576 |
| 4 | 3 | 12 | 1.8 | 5.4 | 9.72 | 17.496 | 31.4928 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| -- | `n=25` | `sum f*x=55` | -- | `=0` | `=26` | `=1.2` | `=67.76` |
Sample Standard deviation `S = sqrt((sum f*(x - bar x)^2)/(n-1))`
`=sqrt(26/24)`
`=sqrt(1.0833)`
`=1.0408`
Sample Skewness `= (sum f*(x - bar x)^3)/((n-1)*S^3)`
`=1.2/(24*(1.0408)^3)`
`=1.2/(24*1.1276)`
`=0.0443`
Sample Kurtosis `= (sum f*(x - bar x)^4)/((n-1)*S^4)`
`=67.76/(24*(1.0408)^4)`
`=67.76/(24*1.1736)`
`=2.4057`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then