Home > Statistical Methods calculators > Box and Whisker Plots for grouped data example

Box and Whisker Plots for grouped data Example-3 ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Mode using Grouping Method
  19. Less than type Cumulative frequency table
  20. More than type Cumulative frequency table
  21. Class and their frequency table

2. Example-2
(Previous example)
4. Example-4
(Next example)

3. Example-3





3. Calculate Box and Whisker Plots from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Box and Whisker Plots :
ClassFrequency
`f`
`cf`
2 - 433
4 - 647
6 - 829
8 - 10110
---------
n = 10--


Minimum value `=2`

Maximum value `=10`



First quartile `Q_1` :

Here, `n = 10`


`Q_1` class :

Class with `(n/4)^(th)` value of the observation in `cf` column

`=(10/4)^(th)` value of the observation in `cf` column

`=(2.5)^(th)` value of the observation in `cf` column

and it lies in the class `2 - 4`.

`:. Q_1` class : `2 - 4`

The lower boundary point of `2 - 4` is `2`.

`:. L = 2`

`Q_1 = L + (( n)/4 - cf)/f * c`

`=2 + (2.5 - 0)/3 * 2`

`=2 + (2.5)/3 * 2`

`=2 + 1.6667`

`=3.6667`



Median `Q_2` :


`Q_2` class :

Class with `((2n)/4)^(th)` value of the observation in `cf` column

`=((2*10)/4)^(th)` value of the observation in `cf` column

`=(5)^(th)` value of the observation in `cf` column

and it lies in the class `4 - 6`.

`:. Q_2` class : `4 - 6`

The lower boundary point of `4 - 6` is `4`.

`:. L = 4`

`Q_2 = L + ((2 n)/4 - cf)/f * c`

`=4 + (5 - 3)/4 * 2`

`=4 + (2)/4 * 2`

`=4 + 1`

`=5`



Third quartile `Q_3` :


`Q_3` class :

Class with `((3n)/4)^(th)` value of the observation in `cf` column

`=((3*10)/4)^(th)` value of the observation in `cf` column

`=(7.5)^(th)` value of the observation in `cf` column

and it lies in the class `6 - 8`.

`:. Q_3` class : `6 - 8`

The lower boundary point of `6 - 8` is `6`.

`:. L = 6`

`Q_3 = L + ((3 n)/4 - cf)/f * c`

`=6 + (7.5 - 7)/2 * 2`

`=6 + (0.5)/2 * 2`

`=6 + 0.5`

`=6.5`



Thus Five number summary is
1. Minimum value `=2`

2. First quartile `Q_1=3.6667`

3. Median `Q_2=5`

4. Third quartile `Q_3=6.5`

5. Maximum value `=10`






This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
4. Example-4
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.