Home > Statistical Methods calculators > Box and Whisker Plots for grouped data example

Box and Whisker Plots for grouped data Example-4 ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

3. Example-3
(Previous example)
11. Mode using Grouping Method
(Next method)

4. Example-4





4. Calculate Box and Whisker Plots from the following grouped data
ClassFrequency
0 - 25
2 - 416
4 - 613
6 - 87
8 - 105
10 - 124


Solution:
Box and Whisker Plots :
ClassFrequency
`f`
`cf`
0 - 255
2 - 41621
4 - 61334
6 - 8741
8 - 10546
10 - 12450
---------
n = 50--


Minimum value `=0`

Maximum value `=12`



First quartile `Q_1` :

Here, `n = 50`


`Q_1` class :

Class with `(n/4)^(th)` value of the observation in `cf` column

`=(50/4)^(th)` value of the observation in `cf` column

`=(12.5)^(th)` value of the observation in `cf` column

and it lies in the class `2 - 4`.

`:. Q_1` class : `2 - 4`

The lower boundary point of `2 - 4` is `2`.

`:. L = 2`

`Q_1 = L + (( n)/4 - cf)/f * c`

`=2 + (12.5 - 5)/16 * 2`

`=2 + (7.5)/16 * 2`

`=2 + 0.9375`

`=2.9375`



Median `Q_2` :


`Q_2` class :

Class with `((2n)/4)^(th)` value of the observation in `cf` column

`=((2*50)/4)^(th)` value of the observation in `cf` column

`=(25)^(th)` value of the observation in `cf` column

and it lies in the class `4 - 6`.

`:. Q_2` class : `4 - 6`

The lower boundary point of `4 - 6` is `4`.

`:. L = 4`

`Q_2 = L + ((2 n)/4 - cf)/f * c`

`=4 + (25 - 21)/13 * 2`

`=4 + (4)/13 * 2`

`=4 + 0.6154`

`=4.6154`



Third quartile `Q_3` :


`Q_3` class :

Class with `((3n)/4)^(th)` value of the observation in `cf` column

`=((3*50)/4)^(th)` value of the observation in `cf` column

`=(37.5)^(th)` value of the observation in `cf` column

and it lies in the class `6 - 8`.

`:. Q_3` class : `6 - 8`

The lower boundary point of `6 - 8` is `6`.

`:. L = 6`

`Q_3 = L + ((3 n)/4 - cf)/f * c`

`=6 + (37.5 - 34)/7 * 2`

`=6 + (3.5)/7 * 2`

`=6 + 1`

`=7`



Thus Five number summary is
1. Minimum value `=0`

2. First quartile `Q_1=2.9375`

3. Median `Q_2=4.6154`

4. Third quartile `Q_3=7`

5. Maximum value `=12`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3
(Previous example)
11. Mode using Grouping Method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.