1. Calculate Moment about origin from the following grouped data
Solution:Moments :`x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2` `(5)=(2)xx(4)` | `f*x^3` `(6)=(2)xx(5)` | `f*x^4` `(7)=(2)xx(6)` |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 5 | 5 | 5 | 5 | 5 |
| 2 | 10 | 20 | 40 | 80 | 160 |
| 3 | 6 | 18 | 54 | 162 | 486 |
| 4 | 3 | 12 | 48 | 192 | 768 |
| --- | --- | --- | --- | --- | --- |
| -- | `n=25` | `sum f*x=55` | `=147` | `=439` | `=1419` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*x)/n`
`=(55)/(25)`
`=2.2`
Second Raw Moment`M_2=(sum f*x^2)/n`
`=(147)/(25)`
`=5.88`
Third Raw Moment`M_3=(sum f*x^3)/n`
`=(439)/(25)`
`=17.56`
Fourth Raw Moment`M_4=(sum f*x^4)/n`
`=(1419)/(25)`
`=56.76`
Find Central moments using Moments about originFirst Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=5.88-2.2^2`
`=5.88-4.84`
`=1.04`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=17.56-3*5.88*2.2+2*2.2^3`
`=17.56-38.808+21.296`
`=0.048`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=56.76-4*17.56*2.2+6*5.88*2.2^2-3*2.2^4`
`=56.76-154.528+170.7552-70.2768`
`=2.7104`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(0.048)^2/(1.04)^3`
`=(0.0023)/(1.1249)`
`=0.002`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(2.7104)/(1.04)^2`
`=(2.7104)/(1.0816)`
`=2.5059`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about origin from the following grouped data
| X | Frequency |
| 10 | 3 |
| 11 | 12 |
| 12 | 18 |
| 13 | 12 |
| 14 | 3 |
Solution:Moments :`x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2` `(5)=(2)xx(4)` | `f*x^3` `(6)=(2)xx(5)` | `f*x^4` `(7)=(2)xx(6)` |
| 10 | 3 | 30 | 300 | 3000 | 30000 |
| 11 | 12 | 132 | 1452 | 15972 | 175692 |
| 12 | 18 | 216 | 2592 | 31104 | 373248 |
| 13 | 12 | 156 | 2028 | 26364 | 342732 |
| 14 | 3 | 42 | 588 | 8232 | 115248 |
| --- | --- | --- | --- | --- | --- |
| -- | `n=48` | `sum f*x=576` | `=6960` | `=84672` | `=1036920` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*x)/n`
`=(576)/(48)`
`=12`
Second Raw Moment`M_2=(sum f*x^2)/n`
`=(6960)/(48)`
`=145`
Third Raw Moment`M_3=(sum f*x^3)/n`
`=(84672)/(48)`
`=1764`
Fourth Raw Moment`M_4=(sum f*x^4)/n`
`=(1036920)/(48)`
`=21602.5`
Find Central moments using Moments about originFirst Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=145-12^2`
`=145-144`
`=1`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=1764-3*145*12+2*12^3`
`=1764-5220+3456`
`=0`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=21602.5-4*1764*12+6*145*12^2-3*12^4`
`=21602.5-84672+125280-62208`
`=2.5`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(0)^2/(1)^3`
`=(0)/(1)`
`=0`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(2.5)/(1)^2`
`=(2.5)/(1)`
`=2.5`
Moment coefficient of skewness`beta_1=0` : The distribution is perfectly symmetrical (like a normal distribution).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about origin from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:Moments :Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2` `(5)=(2)xx(4)` | `f*x^3` `(6)=(2)xx(5)` | `f*x^4` `(7)=(2)xx(6)` |
| 2 - 4 | 3 | 3 | 9 | 27 | 81 | 243 |
| 4 - 6 | 5 | 4 | 20 | 100 | 500 | 2500 |
| 6 - 8 | 7 | 2 | 14 | 98 | 686 | 4802 |
| 8 - 10 | 9 | 1 | 9 | 81 | 729 | 6561 |
| --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=10` | `sum f*x=52` | `=306` | `=1996` | `=14106` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*x)/n`
`=(52)/(10)`
`=5.2`
Second Raw Moment`M_2=(sum f*x^2)/n`
`=(306)/(10)`
`=30.6`
Third Raw Moment`M_3=(sum f*x^3)/n`
`=(1996)/(10)`
`=199.6`
Fourth Raw Moment`M_4=(sum f*x^4)/n`
`=(14106)/(10)`
`=1410.6`
Find Central moments using Moments about originFirst Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=30.6-5.2^2`
`=30.6-27.04`
`=3.56`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=199.6-3*30.6*5.2+2*5.2^3`
`=199.6-477.36+281.216`
`=3.456`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=1410.6-4*199.6*5.2+6*30.6*5.2^2-3*5.2^4`
`=1410.6-4151.68+4964.544-2193.4848`
`=29.9792`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(3.456)^2/(3.56)^3`
`=(11.9439)/(45.118)`
`=0.2647`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(29.9792)/(3.56)^2`
`=(29.9792)/(12.6736)`
`=2.3655`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
4. Calculate Moment about origin from the following grouped data
| Class | Frequency |
| 0 - 2 | 5 |
| 2 - 4 | 16 |
| 4 - 6 | 13 |
| 6 - 8 | 7 |
| 8 - 10 | 5 |
| 10 - 12 | 4 |
Solution:Moments :Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2` `(5)=(2)xx(4)` | `f*x^3` `(6)=(2)xx(5)` | `f*x^4` `(7)=(2)xx(6)` |
| 0 - 2 | 1 | 5 | 5 | 5 | 5 | 5 |
| 2 - 4 | 3 | 16 | 48 | 144 | 432 | 1296 |
| 4 - 6 | 5 | 13 | 65 | 325 | 1625 | 8125 |
| 6 - 8 | 7 | 7 | 49 | 343 | 2401 | 16807 |
| 8 - 10 | 9 | 5 | 45 | 405 | 3645 | 32805 |
| 10 - 12 | 11 | 4 | 44 | 484 | 5324 | 58564 |
| --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=50` | `sum f*x=256` | `=1706` | `=13432` | `=117602` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*x)/n`
`=(256)/(50)`
`=5.12`
Second Raw Moment`M_2=(sum f*x^2)/n`
`=(1706)/(50)`
`=34.12`
Third Raw Moment`M_3=(sum f*x^3)/n`
`=(13432)/(50)`
`=268.64`
Fourth Raw Moment`M_4=(sum f*x^4)/n`
`=(117602)/(50)`
`=2352.04`
Find Central moments using Moments about originFirst Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=34.12-5.12^2`
`=34.12-26.2144`
`=7.9056`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=268.64-3*34.12*5.12+2*5.12^3`
`=268.64-524.0832+268.4355`
`=12.9923`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=2352.04-4*268.64*5.12+6*34.12*5.12^2-3*5.12^4`
`=2352.04-5501.7472+5366.612-2061.5843`
`=155.3205`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(12.9923)^2/(7.9056)^3`
`=(168.7987)/(494.0882)`
`=0.3416`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(155.3205)/(7.9056)^2`
`=(155.3205)/(62.4985)`
`=2.4852`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then