1. Calculate Moment about the value 2 from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:Moments :`A=2`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `(x-A)` `(5)` | `f*(x-A)` `(6)=(3)xx(5)` | `f*(x-A)^2` `(7)=(5)xx(6)` | `f*(x-A)^3` `(8)=(5)xx(7)` | `f*(x-A)^4` `(9)=(5)xx(8)` |
| 2 - 4 | 3 | 3 | 1 | 3 | 3 | 3 | 3 |
| 4 - 6 | 5 | 4 | 3 | 12 | 36 | 108 | 324 |
| 6 - 8 | 7 | 2 | 5 | 10 | 50 | 250 | 1250 |
| 8 - 10 | 9 | 1 | 7 | 7 | 49 | 343 | 2401 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=10` | -- | `=32` | `=138` | `=704` | `=3978` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*(x-A))/n`
`=(32)/(10)`
`=3.2`
Second Raw Moment`M_2=(sum f*(x-A)^2)/n`
`=(138)/(10)`
`=13.8`
Third Raw Moment`M_3=(sum f*(x-A)^3)/n`
`=(704)/(10)`
`=70.4`
Fourth Raw Moment`M_4=(sum f*(x-A)^4)/n`
`=(3978)/(10)`
`=397.8`
Find Central moments using Moments about the value 2First Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=13.8-3.2^2`
`=13.8-10.24`
`=3.56`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=70.4-3*13.8*3.2+2*3.2^3`
`=70.4-132.48+65.536`
`=3.456`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=397.8-4*70.4*3.2+6*13.8*3.2^2-3*3.2^4`
`=397.8-901.12+847.872-314.5728`
`=29.9792`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(3.456)^2/(3.56)^3`
`=(11.9439)/(45.118)`
`=0.2647`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(29.9792)/(3.56)^2`
`=(29.9792)/(12.6736)`
`=2.3655`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about the value 10 from the following grouped data
| X | Frequency |
| 10 | 3 |
| 11 | 12 |
| 12 | 18 |
| 13 | 12 |
| 14 | 3 |
Solution:Moments :`A=10`
`x` `(2)` | `f` `(3)` | `(x-A)` `(5)` | `f*(x-A)` `(6)=(3)xx(5)` | `f*(x-A)^2` `(7)=(5)xx(6)` | `f*(x-A)^3` `(8)=(5)xx(7)` | `f*(x-A)^4` `(9)=(5)xx(8)` |
| 10 | 3 | 0 | 0 | 0 | 0 | 0 |
| 11 | 12 | 1 | 12 | 12 | 12 | 12 |
| 12 | 18 | 2 | 36 | 72 | 144 | 288 |
| 13 | 12 | 3 | 36 | 108 | 324 | 972 |
| 14 | 3 | 4 | 12 | 48 | 192 | 768 |
| --- | --- | --- | --- | --- | --- | --- |
| -- | `n=48` | -- | `=96` | `=240` | `=672` | `=2040` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*(x-A))/n`
`=(96)/(48)`
`=2`
Second Raw Moment`M_2=(sum f*(x-A)^2)/n`
`=(240)/(48)`
`=5`
Third Raw Moment`M_3=(sum f*(x-A)^3)/n`
`=(672)/(48)`
`=14`
Fourth Raw Moment`M_4=(sum f*(x-A)^4)/n`
`=(2040)/(48)`
`=42.5`
Find Central moments using Moments about the value 10First Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=5-2^2`
`=5-4`
`=1`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=14-3*5*2+2*2^3`
`=14-30+16`
`=0`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=42.5-4*14*2+6*5*2^2-3*2^4`
`=42.5-112+120-48`
`=2.5`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(0)^2/(1)^3`
`=(0)/(1)`
`=0`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(2.5)/(1)^2`
`=(2.5)/(1)`
`=2.5`
Moment coefficient of skewness`beta_1=0` : The distribution is perfectly symmetrical (like a normal distribution).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about the value 5 from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:Moments :`A=5`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `(x-A)` `(5)` | `f*(x-A)` `(6)=(3)xx(5)` | `f*(x-A)^2` `(7)=(5)xx(6)` | `f*(x-A)^3` `(8)=(5)xx(7)` | `f*(x-A)^4` `(9)=(5)xx(8)` |
| 2 - 4 | 3 | 3 | -2 | -6 | 12 | -24 | 48 |
| 4 - 6 | 5 | 4 | 0 | 0 | 0 | 0 | 0 |
| 6 - 8 | 7 | 2 | 2 | 4 | 8 | 16 | 32 |
| 8 - 10 | 9 | 1 | 4 | 4 | 16 | 64 | 256 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=10` | -- | `=2` | `=36` | `=56` | `=336` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*(x-A))/n`
`=(2)/(10)`
`=0.2`
Second Raw Moment`M_2=(sum f*(x-A)^2)/n`
`=(36)/(10)`
`=3.6`
Third Raw Moment`M_3=(sum f*(x-A)^3)/n`
`=(56)/(10)`
`=5.6`
Fourth Raw Moment`M_4=(sum f*(x-A)^4)/n`
`=(336)/(10)`
`=33.6`
Find Central moments using Moments about the value 5First Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=3.6-0.2^2`
`=3.6-0.04`
`=3.56`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=5.6-3*3.6*0.2+2*0.2^3`
`=5.6-2.16+0.016`
`=3.456`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=33.6-4*5.6*0.2+6*3.6*0.2^2-3*0.2^4`
`=33.6-4.48+0.864-0.0048`
`=29.9792`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(3.456)^2/(3.56)^3`
`=(11.9439)/(45.118)`
`=0.2647`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(29.9792)/(3.56)^2`
`=(29.9792)/(12.6736)`
`=2.3655`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
4. Calculate Moment about the value 5 from the following grouped data
| Class | Frequency |
| 0 - 2 | 5 |
| 2 - 4 | 16 |
| 4 - 6 | 13 |
| 6 - 8 | 7 |
| 8 - 10 | 5 |
| 10 - 12 | 4 |
Solution:Moments :`A=5`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `(x-A)` `(5)` | `f*(x-A)` `(6)=(3)xx(5)` | `f*(x-A)^2` `(7)=(5)xx(6)` | `f*(x-A)^3` `(8)=(5)xx(7)` | `f*(x-A)^4` `(9)=(5)xx(8)` |
| 0 - 2 | 1 | 5 | -4 | -20 | 80 | -320 | 1280 |
| 2 - 4 | 3 | 16 | -2 | -32 | 64 | -128 | 256 |
| 4 - 6 | 5 | 13 | 0 | 0 | 0 | 0 | 0 |
| 6 - 8 | 7 | 7 | 2 | 14 | 28 | 56 | 112 |
| 8 - 10 | 9 | 5 | 4 | 20 | 80 | 320 | 1280 |
| 10 - 12 | 11 | 4 | 6 | 24 | 144 | 864 | 5184 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| -- | -- | `n=50` | -- | `=6` | `=396` | `=792` | `=8112` |
Now, calculate Raw MomentsFirst Raw Moment`M_1=(sum f*(x-A))/n`
`=(6)/(50)`
`=0.12`
Second Raw Moment`M_2=(sum f*(x-A)^2)/n`
`=(396)/(50)`
`=7.92`
Third Raw Moment`M_3=(sum f*(x-A)^3)/n`
`=(792)/(50)`
`=15.84`
Fourth Raw Moment`M_4=(sum f*(x-A)^4)/n`
`=(8112)/(50)`
`=162.24`
Find Central moments using Moments about the value 5First Central Moment`m_1=0`
Second Central Moment`m_2=M_2-M_1^2`
`=7.92-0.12^2`
`=7.92-0.0144`
`=7.9056`
Third Central Moment`m_3=M_3-3M_2M_1+2M_1^3`
`=15.84-3*7.92*0.12+2*0.12^3`
`=15.84-2.8512+0.0035`
`=12.9923`
Fourth Central Moment`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`
`=162.24-4*15.84*0.12+6*7.92*0.12^2-3*0.12^4`
`=162.24-7.6032+0.6843`
`=155.3205`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(12.9923)^2/(7.9056)^3`
`=(168.7987)/(494.0882)`
`=0.3416`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(155.3205)/(7.9056)^2`
`=(155.3205)/(62.4985)`
`=2.4852`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then