Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for grouped data example

Moments about the value Examples for grouped data ( Enter your problem )
  1. Moments about mean Examples
  2. Moments about origin Examples
  3. Moments about the value Examples
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Mode using Grouping Method
  19. Less than type Cumulative frequency table
  20. More than type Cumulative frequency table
  21. Class and their frequency table
  22. Raw Moments and Central Moments

2. Moments about origin Examples
(Previous example)

3. Moments about the value Examples





1. Calculate Moment about the value 2 from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Moments :
`A=2`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`(x-A)`
`(5)`
`f*(x-A)`
`(6)=(3)xx(5)`
`f*(x-A)^2`
`(7)=(5)xx(6)`
`f*(x-A)^3`
`(8)=(5)xx(7)`
`f*(x-A)^4`
`(9)=(5)xx(8)`
2 - 43313333
4 - 65431236108324
6 - 872510502501250
8 - 109177493432401
------------------------
----`n=10`--`=32``=138``=704``=3978`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum f*(x-A))/n`

`=(32)/(10)`

`=3.2`



Second Raw Moment
`M_2=(sum f*(x-A)^2)/n`

`=(138)/(10)`

`=13.8`



Third Raw Moment
`M_3=(sum f*(x-A)^3)/n`

`=(704)/(10)`

`=70.4`



Fourth Raw Moment
`M_4=(sum f*(x-A)^4)/n`

`=(3978)/(10)`

`=397.8`



Find Central moments using Moments about the value 2

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=13.8-3.2^2`

`=13.8-10.24`

`=3.56`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=70.4-3*13.8*3.2+2*3.2^3`

`=70.4-132.48+65.536`

`=3.456`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=397.8-4*70.4*3.2+6*13.8*3.2^2-3*3.2^4`

`=397.8-901.12+847.872-314.5728`

`=29.9792`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(3.456)^2/(3.56)^3`

`=(11.9439)/(45.118)`

`=0.2647`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(29.9792)/(3.56)^2`

`=(29.9792)/(12.6736)`

`=2.3655`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about the value 10 from the following grouped data
XFrequency
103
1112
1218
1312
143


Solution:
Moments :
`A=10`

`x`
`(2)`
`f`
`(3)`
`(x-A)`
`(5)`
`f*(x-A)`
`(6)=(3)xx(5)`
`f*(x-A)^2`
`(7)=(5)xx(6)`
`f*(x-A)^3`
`(8)=(5)xx(7)`
`f*(x-A)^4`
`(9)=(5)xx(8)`
10300000
1112112121212
121823672144288
1312336108324972
14341248192768
---------------------
--`n=48`--`=96``=240``=672``=2040`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum f*(x-A))/n`

`=(96)/(48)`

`=2`



Second Raw Moment
`M_2=(sum f*(x-A)^2)/n`

`=(240)/(48)`

`=5`



Third Raw Moment
`M_3=(sum f*(x-A)^3)/n`

`=(672)/(48)`

`=14`



Fourth Raw Moment
`M_4=(sum f*(x-A)^4)/n`

`=(2040)/(48)`

`=42.5`



Find Central moments using Moments about the value 10

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=5-2^2`

`=5-4`

`=1`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=14-3*5*2+2*2^3`

`=14-30+16`

`=0`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=42.5-4*14*2+6*5*2^2-3*2^4`

`=42.5-112+120-48`

`=2.5`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(0)^2/(1)^3`

`=(0)/(1)`

`=0`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(2.5)/(1)^2`

`=(2.5)/(1)`

`=2.5`



Moment coefficient of skewness
`beta_1=0` : The distribution is perfectly symmetrical (like a normal distribution).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about the value 5 from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Moments :
`A=5`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`(x-A)`
`(5)`
`f*(x-A)`
`(6)=(3)xx(5)`
`f*(x-A)^2`
`(7)=(5)xx(6)`
`f*(x-A)^3`
`(8)=(5)xx(7)`
`f*(x-A)^4`
`(9)=(5)xx(8)`
2 - 433-2-612-2448
4 - 65400000
6 - 8722481632
8 - 1091441664256
------------------------
----`n=10`--`=2``=36``=56``=336`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum f*(x-A))/n`

`=(2)/(10)`

`=0.2`



Second Raw Moment
`M_2=(sum f*(x-A)^2)/n`

`=(36)/(10)`

`=3.6`



Third Raw Moment
`M_3=(sum f*(x-A)^3)/n`

`=(56)/(10)`

`=5.6`



Fourth Raw Moment
`M_4=(sum f*(x-A)^4)/n`

`=(336)/(10)`

`=33.6`



Find Central moments using Moments about the value 5

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=3.6-0.2^2`

`=3.6-0.04`

`=3.56`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=5.6-3*3.6*0.2+2*0.2^3`

`=5.6-2.16+0.016`

`=3.456`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=33.6-4*5.6*0.2+6*3.6*0.2^2-3*0.2^4`

`=33.6-4.48+0.864-0.0048`

`=29.9792`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(3.456)^2/(3.56)^3`

`=(11.9439)/(45.118)`

`=0.2647`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(29.9792)/(3.56)^2`

`=(29.9792)/(12.6736)`

`=2.3655`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
4. Calculate Moment about the value 5 from the following grouped data
ClassFrequency
0 - 25
2 - 416
4 - 613
6 - 87
8 - 105
10 - 124


Solution:
Moments :
`A=5`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`(x-A)`
`(5)`
`f*(x-A)`
`(6)=(3)xx(5)`
`f*(x-A)^2`
`(7)=(5)xx(6)`
`f*(x-A)^3`
`(8)=(5)xx(7)`
`f*(x-A)^4`
`(9)=(5)xx(8)`
0 - 215-4-2080-3201280
2 - 4316-2-3264-128256
4 - 651300000
6 - 8772142856112
8 - 1095420803201280
10 - 121146241448645184
------------------------
----`n=50`--`=6``=396``=792``=8112`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum f*(x-A))/n`

`=(6)/(50)`

`=0.12`



Second Raw Moment
`M_2=(sum f*(x-A)^2)/n`

`=(396)/(50)`

`=7.92`



Third Raw Moment
`M_3=(sum f*(x-A)^3)/n`

`=(792)/(50)`

`=15.84`



Fourth Raw Moment
`M_4=(sum f*(x-A)^4)/n`

`=(8112)/(50)`

`=162.24`



Find Central moments using Moments about the value 5

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=7.92-0.12^2`

`=7.92-0.0144`

`=7.9056`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=15.84-3*7.92*0.12+2*0.12^3`

`=15.84-2.8512+0.0035`

`=12.9923`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=162.24-4*15.84*0.12+6*7.92*0.12^2-3*0.12^4`

`=162.24-7.6032+0.6843`

`=155.3205`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(12.9923)^2/(7.9056)^3`

`=(168.7987)/(494.0882)`

`=0.3416`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(155.3205)/(7.9056)^2`

`=(155.3205)/(62.4985)`

`=2.4852`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Moments about origin Examples
(Previous example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.