Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

2. Find 1 Missing frequency when Median is given example
(Next example)

1. Find 1 Missing frequency when Mean is given example





1. Find missing frequency from the following data
ClassFrequency
5 - 1011
10 - 1520
15 - 2035
20 - 2520
25 - 30a
30 - 356
mean = 18.1


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`d=(x-A)/h=(x-27.5)/5`
`A=27.5,h=5`
`(4)`
`f*d`
`(5)=(2)xx(4)`
5 - 1011 7.5 `7.5=(5+10)/2` -4 `d=(7.5-27.5)/5=(-20)/5=-4`
`d=(x-27.5)/5`
 `-44` `-44=11xx-4`
`(5)=(2)xx(4)`
10 - 1520 12.5 `12.5=(10+15)/2` -3 `d=(12.5-27.5)/5=(-15)/5=-3`
`d=(x-27.5)/5`
 `-60` `-60=20xx-3`
`(5)=(2)xx(4)`
15 - 2035 17.5 `17.5=(15+20)/2` -2 `d=(17.5-27.5)/5=(-10)/5=-2`
`d=(x-27.5)/5`
 `-70` `-70=35xx-2`
`(5)=(2)xx(4)`
20 - 2520 22.5 `22.5=(20+25)/2` -1 `d=(22.5-27.5)/5=(-5)/5=-1`
`d=(x-27.5)/5`
 `-20` `-20=20xx-1`
`(5)=(2)xx(4)`
25 - 30a 27.5 `27.5=(25+30)/2` 0 `d=(27.5-27.5)/5=(0)/5=0`
`d=(x-27.5)/5`
 `0` `0=axx0`
`(5)=(2)xx(4)`
30 - 356 32.5 `32.5=(30+35)/2` 1 `d=(32.5-27.5)/5=(5)/5=1`
`d=(x-27.5)/5`
 `6` `6=6xx1`
`(5)=(2)xx(4)`
---------------
`n=92+a`----------`sum f*d=-188`


Mean `bar x = A + (sum fd)/n * h`

`18.1 = 27.5 + (-188)/(92+a) * 5`

`-9.4 = (-188)/(92+a) * 5`

`92+a = (-188)/(-9.4) * 5`

`92+a = 100`

`a = 100 - 92`

`a = 8`

Thus, the missing frequency is `8`.
2. Find missing frequency from the following data
ClassFrequency
100 - 110100
110 - 120130
120 - 13071
130 - 14020
140 - 150?
150 - 16050
mean = 123


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`d=(x-A)/h=(x-145)/10`
`A=145,h=10`
`(4)`
`f*d`
`(5)=(2)xx(4)`
100 - 110100105-4`-400`
110 - 120130115-3`-390`
120 - 13071125-2`-142`
130 - 14020135-1`-20`
140 - 150a1450`0`
150 - 160501551`50`
---------------
`n=371+a`----------`sum f*d=-902`


Mean `bar x = A + (sum fd)/n * h`

`123=145 + (-902)/(371+a) * 10`

`-22 = (-902)/(371+a) * 10`

`371+a = (-902)/(-22) * 10`

`371+a=410`

`a=410 - 371`

`a=39`

Thus, the missing frequency is `39`.
3. Find missing frequency from the following data
ClassFrequency
0 - 104
10 - 204
20 - 309
30 - 40?
40 - 5012
50 - 606
60 - 703
70 - 802
mean = 37


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`d=(x-A)/h=(x-35)/10`
`A=35,h=10`
`(4)`
`f*d`
`(5)=(2)xx(4)`
0 - 1045-3`-12`
10 - 20415-2`-8`
20 - 30925-1`-9`
30 - 40a350`0`
40 - 5012451`12`
50 - 606552`12`
60 - 703653`9`
70 - 802754`8`
---------------
`n=40+a`----------`sum f*d=12`


Mean `bar x = A + (sum fd)/n * h`

`37=35 + (12)/(40+a) * 10`

`2 = (12)/(40+a) * 10`

`40+a = (12)/(2) * 10`

`40+a=60`

`a=60 - 40`

`a=20`

Thus, the missing frequency is `20`.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Find 1 Missing frequency when Median is given example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.