Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

1. Find 1 Missing frequency when Mean is given example
(Previous example)
3. Find 2 Missing frequencies when Mean is given example
(Next example)

2. Find 1 Missing frequency when Median is given example





1. Find missing frequency from the following data
ClassFrequency
50 - 10035
100 - 15060
150 - 200?
200 - 25040
250 - 30020
median = 168


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(3)`
50-10035 35 `35=0+35`
`(3)=`Previous `(3)+(2)`
100-15060 95 `95=35+60`
`(3)=`Previous `(3)+(2)`
150-200a 95 + a `95 + a=95+a`
`(3)=`Previous `(3)+(2)`
200-25040 135 + a `135 + a=95 + a+40`
`(3)=`Previous `(3)+(2)`
250-30020 155 + a `155 + a=135 + a+20`
`(3)=`Previous `(3)+(2)`
---------
--`n=a + 155`


To find median class
Here, median is `168`.

`:.` The median class is `150 - 200`.

Now,
`:. L = `lower boundary point of median class `=150`

`:. n = `Total frequency `=a + 155`

`:. cf = `Cumulative frequency of the class preceding the median class `=95`

`:. f = `Frequency of the median class `=a`

`:. c = `class length of median class `=50`

Median `M = L + (( n)/2 - cf)/f * c`

`168=150 + (((a + 155))/2 - (95))/a * 50`

`168 - 150 = (((a + 155))/2 - (95))/a * 50`

`18 = ((a + 155) - 2(95))/(2 * a) * 50`

`18=((a+155) - (190))/(2a) * 50`

`18*2a=((a+155)-(190)) * 50`

`36a=(a-35) * 50`

`36a=50a-1750`

`-14a=-1750`

`14a=1750`

`a=1750/14`

`a=125`

Thus, the missing frequency is `125`.
2. Find missing frequency from the following data
ClassFrequency
10 - 2015
20 - 3025
30 - 40?
40 - 5012
50 - 608
60 - 705
70 - 803
median = 32


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(6)`
10 - 201515
20 - 302540
30 - 40a40+a
40 - 501252+a
50 - 60860+a
60 - 70565+a
70 - 80368+a
------
`n=68+a`


To find median class
Here, median is `32`.

`:.` The median class is `30 - 40`.

Now,
`:. L = `lower boundary point of median class `=30`

`:. n = `Total frequency `=0`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=a`

`:. c = `class length of median class `=10`

Median `M=L+(( n)/2-cf)/f * c`

`32=30 + (((68+a))/2 - (40))/a * 10`

`32 - 30 = (((68+a))/2 - (40))/a * 10`

`2 = ((68+a) - 2(40))/(2 * a) * 10`

`2=((a+68) - (80))/(2a) * 10`

`2*2a=((a+68)-(80)) * 10`

`4a=(a-12) * 10`

`4a=10a-120`

`-6a+120 = 0`

`6a = 120`

`a = 120/6`

`a = 20 ->(1)`

Thus, the missing frequency is `20`.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Find 1 Missing frequency when Mean is given example
(Previous example)
3. Find 2 Missing frequencies when Mean is given example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.