Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

2. Find 1 Missing frequency when Median is given example
(Previous example)
4. Find 2 Missing frequencies when Median is given example
(Next example)

3. Find 2 Missing frequencies when Mean is given example





1. Find missing frequency from the following data
ClassFrequency
0 - 51
5 - 107
10 - 1511
15 - 20?
20 - 25?
25 - 304
30 - 352
Total Frequency (N) = 40 and mean = 16.5


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`d=(x-A)/h=(x-17.5)/5`
`A=17.5,h=5`
`(4)`
`f*d`
`(5)=(2)xx(4)`
0 - 51 2.5 `2.5=(0+5)/2` -3 `d=(2.5-17.5)/5=(-15)/5=-3`
`d=(x-17.5)/5`
 `-3` `-3=1xx-3`
`(5)=(2)xx(4)`
5 - 107 7.5 `7.5=(5+10)/2` -2 `d=(7.5-17.5)/5=(-10)/5=-2`
`d=(x-17.5)/5`
 `-14` `-14=7xx-2`
`(5)=(2)xx(4)`
10 - 1511 12.5 `12.5=(10+15)/2` -1 `d=(12.5-17.5)/5=(-5)/5=-1`
`d=(x-17.5)/5`
 `-11` `-11=11xx-1`
`(5)=(2)xx(4)`
15 - 20a 17.5 `17.5=(15+20)/2` 0 `d=(17.5-17.5)/5=(0)/5=0`
`d=(x-17.5)/5`
 `0` `0=axx0`
`(5)=(2)xx(4)`
20 - 25b 22.5 `22.5=(20+25)/2` 1 `d=(22.5-17.5)/5=(5)/5=1`
`d=(x-17.5)/5`
 `b` `b=bxx1`
`(5)=(2)xx(4)`
25 - 304 27.5 `27.5=(25+30)/2` 2 `d=(27.5-17.5)/5=(10)/5=2`
`d=(x-17.5)/5`
 `8` `8=4xx2`
`(5)=(2)xx(4)`
30 - 352 32.5 `32.5=(30+35)/2` 3 `d=(32.5-17.5)/5=(15)/5=3`
`d=(x-17.5)/5`
 `6` `6=2xx3`
`(5)=(2)xx(4)`
---------------
`n=25+a+b`----------`sum f*d=-14+b`


`n = 40`

`a + b + 25 = 40`

`a + b = 15 ->(1)`

Mean `bar x = A + (sum fd)/n * h`

`16.5 = 17.5 + (-14+b)/(40) * 5`

`-1 = (-14+b)/(40) * 5`

`(-1 * 40) / 5 = -14+b`

`-8 = -14+b`

`-8 + 14 = b`

`b = 6`


Substituting in `(1)`

`a + 6 = 15`

`a = 9`

Thus, the missing frequencies are `9` and `6` respectively.
2. Find missing frequency from the following data
ClassFrequency
0 - 205
20 - 4013
40 - 60?
60 - 8015
80 - 100?
100 - 12020
120 - 1407
Total Frequency (N) = 100 and mean = 74


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`d=(x-A)/h=(x-50)/20`
`A=50,h=20`
`(4)`
`f*d`
`(5)=(2)xx(4)`
0 - 20510-2`-10`
20 - 401330-1`-13`
40 - 60a500`0`
60 - 8015701`15`
80 - 100b902`2b`
100 - 120201103`60`
120 - 14071304`28`
---------------
`n=60+a+b`----------`sum f*d=80+2b`


`n = 100`

`60 + a+b= 100`

`a+b=40 ->(1)`

Mean `bar x = A + (sum fd)/n * h`

`74=50 + (80+2b)/(100) * 20`

`24 = (80+2b)/(100) * 20`

`(24 * 100) / 20=80+2b`

`120=80+2b`

`120 - 80=2b`

`2b=40 ->(2)`

`b=20`


Substituting in `(1)`

`a+20=40`

`a=20`

Thus, the missing frequencies are `20 and 20` respectively.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Find 1 Missing frequency when Median is given example
(Previous example)
4. Find 2 Missing frequencies when Median is given example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.