Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

3. Find 2 Missing frequencies when Mean is given example
(Previous example)
5. Find 2 Missing frequencies when Mode is given example
(Next example)

4. Find 2 Missing frequencies when Median is given example





1. Find missing frequency from the following data
ClassFrequency
40 - 5950
60 - 79?
80 - 99500
100 - 119?
120 - 13950
Total Frequency (N) = 1000 and median = 87.50


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(3)`
40-5950 50 `50=0+50`
`(3)=`Previous `(3)+(2)`
60-79a 50 + a `50 + a=50+a`
`(3)=`Previous `(3)+(2)`
80-99500 550 + a `550 + a=50 + a+500`
`(3)=`Previous `(3)+(2)`
100-119b 550 + a + b `550 + a + b=550 + a+b`
`(3)=`Previous `(3)+(2)`
120-13950 600 + a + b `600 + a + b=550 + a + b+50`
`(3)=`Previous `(3)+(2)`
---------
--`n=1000`
`n=a + b + 600`


`n=1000`

`a+b+600=1000`

`a+b=400 ->(1)`

To find median class
Here, median is `87.5`.

`:.` The median class is `79.5 - 99.5`.

Now,
`:. L = `lower boundary point of median class `=79.5`

`:. n = `Total frequency `=1000`

`:. cf = `Cumulative frequency of the class preceding the median class `=50 + a`

`:. f = `Frequency of the median class `=500`

`:. c = `class length of median class `=20`

Median `M = L + (( n)/2 - cf)/f * c`

`87.5=79.5 + (( 1000)/2 - (50 + a))/500 * 20`

`87.5 - 79.5=(500 - (50 + a))/500 * 20`

`8 = (-a+450)/500 * 20`

`8*500=(-a+450)*20`

`4000=-20a+9000`

`20a=5000`

`a=5000/20`

`a=250`

Substituting in `(1)`

`250 + b = 400`

`b = 400 - 250`

`b = 150`

Thus, the missing frequencies are `250` and `150` respectively.
2. Find missing frequency from the following data
ClassFrequency
11 - 2042
21 - 3038
31 - 40a
41 - 5054
51 - 60b
61 - 7036
71 - 8032
Total Frequency (N) = 400 and median = 38.5


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(6)`
11 - 204242
21 - 303880
31 - 40a80+a
41 - 5054134+a
51 - 60b134+a+b
61 - 7036170+a+b
71 - 8032202+a+b
------
`n=202+a+b`


`n = 400`

`202 + a+b= 400`

`a+b=198 ->(1)`

To find median class
Here, median is `38.5`.

`:.` The median class is `30.5 - 40.5`.

Now,
`:. L = `lower boundary point of median class `=30.5`

`:. n = `Total frequency `=400`

`:. cf = `Cumulative frequency of the class preceding the median class `=80`

`:. f = `Frequency of the median class `=a`

`:. c = `class length of median class `=10`

Median `M = L + (( n)/2 - cf)/f * c`

`38.5=30.5 + (( 400)/2 - (80))/a * 10`

`38.5 - 30.5=(200 - (80))/a * 10`

`8=(120)/a * 10`

`8*a=(120)*10`

`8a=1200`

`8a-1200 = 0`

`8a = 1200`

`a = 1200/8`

`a = 150 ->(2)`

Now solving this 2 equations using substitution method
`a+b=198`

and `a=150`

`a+b=198 ->(1)`

`a=150 ->(2)`

Putting `a=150` in equation `(1)`, we get

`=>a+b=198`

`=>150+b=198`

`=>b=198-150`

`=>b=48`

`:.a=150" and "b=48`

Thus, the missing frequencies are `150 and 48` respectively.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Find 2 Missing frequencies when Mean is given example
(Previous example)
5. Find 2 Missing frequencies when Mode is given example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.