Home > Statistical Methods calculators > Mean, Median and Mode for mixed data example

Mode Example for mixed data ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Population Variance, Standard deviation and coefficient of variation
  3. Sample Variance, Standard deviation and coefficient of variation

3. Median Example
(Previous example)
2. Population Variance, Standard deviation and coefficient of variation
(Next method)

4. Mode Example





1. Calculate Mode from the following mixed data
ClassFrequency
13
24
510
6 - 1023
10 - 2020
20 - 3020
30 - 5015
50 - 703
70 - 1002


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`cf`
`(6)`
13133
24287
51055017
6 - 1023818440
10 - 20201530060
20 - 30202550080
30 - 50154060095
50 - 7036018098
70 - 100285170100
---------------
`n = 100`-----`sum f*x=1995`-----


Mean `bar x = (sum fx)/n`

`=1995/100`

`=19.95`



To find Median Class
= value of `(n/2)^(th)` observation

= value of `(100/2)^(th)` observation

= value of `50^(th)` observation

From the column of cumulative frequency `cf`, we find that the `50^(th)` observation lies in the class `10 - 20`.

`:.` The median class is `10 - 20`.

Now,
`:. L = `lower boundary point of median class `=10`

`:. n = `Total frequency `=100`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=20`

`:. c = `class length of median class `=10`

Median `M = L + (n/2 - cf)/f * c`

`=10 + (50 - 40)/20 * 10`

`=10 + (10)/20 * 10`

`=10 + 5`

`=15`



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
`Z = 3M - 2 bar x`

`=3 * 15 - 2 * 19.95`

`=45 - 39.9`

`=5.1`


2. Calculate Mode from the following mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`cf`
`(6)`
21221
32363
42485
5 - 9875613
10 - 14151218028
15 - 1981713636
20 - 29424.59840
---------------
`n = 40`-----`sum f*x=486`-----


Mean `bar x = (sum fx)/n`

`=486/40`

`=12.15`



To find Median Class
= value of `(n/2)^(th)` observation

= value of `(40/2)^(th)` observation

= value of `20^(th)` observation

From the column of cumulative frequency `cf`, we find that the `20^(th)` observation lies in the class `10 - 14`.

`:.` The median class is `9.5 - 14.5`.

Now,
`:. L = `lower boundary point of median class `=9.5`

`:. n = `Total frequency `=40`

`:. cf = `Cumulative frequency of the class preceding the median class `=13`

`:. f = `Frequency of the median class `=15`

`:. c = `class length of median class `=5`

Median `M = L + (n/2 - cf)/f * c`

`=9.5 + (20 - 13)/15 * 5`

`=9.5 + (7)/15 * 5`

`=9.5 + 2.3333`

`=11.8333`



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
`Z = 3M - 2 bar x`

`=3 * 11.8333 - 2 * 12.15`

`=35.5 - 24.3`

`=11.2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Median Example
(Previous example)
2. Population Variance, Standard deviation and coefficient of variation
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.