Home > Statistical Methods calculators > Mean, Median and Mode for ungrouped data example

Mean, Median and Mode for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

2. Mean Example
(Next example)

1. Formula & Example





Formula
1. Arithematic mean `bar x = (sum x)/n`
2. Median M = `((n+1)/2)^(th)` value of observation in ascending order
3. Mode is that value of the observation which occurs maximum number of times.

Examples
1. Calculate Mean, Median, Mode from the following data
3,13,11,15,5,4,2,3,2


Solution:
Mean `bar x = (sum x)/n`

`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`

`=58/9`

`=6.4444`



Median :
Observations in the ascending order are :
`2, 2, 3, 3, 4, 5, 11, 13, 15 `

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=4`



Mode :
In the given data, the observation `2,3` occurs maximum number of times (`2`)

`:. Z = 2,3`
2. Calculate Mean, Median, Mode from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
Mean `bar x = (sum x)/n`

`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`

`=880/10`

`=88`



Median :
Observations in the ascending order are :
`70, 76, 80, 85, 85, 85, 95, 96, 100, 108 `

Here, `n=10` is even.

`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`

`=(text{Value of } (10/2)^(th) text{ observation} + text{Value of } (10/2 + 1)^(th) text{ observation})/2`

`=(text{Value of }5^(th) text{ observation} + text{Value of }6^(th) text{ observation})/2`

`=(85 + 85)/2`

`=85`



Mode :
In the given data, the observation `85` occurs maximum number of times (`3`)

`:. Z = 85`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.