Home > Statistical Methods calculators > Mean, Median and Mode for ungrouped data example

Median Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order

2. Mean Example
(Previous example)
4. Mode Example
(Next example)

3. Median Example





Median :
After arranging the observations in ascending (or descending) order, then the middle number is called median.
It is denoted by `M`

1. If `n` is odd, then
`M=` value of `((n+1)/2)^(th)` observation

2. If `n` is even, then
`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`


1. Find the Median of `4,14,12,16,6,3,1,2,3`

Solution:
Median :
Observations in the ascending order are :
`1,2,3,3,4,6,12,14,16`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=4`


2. Find the Median of `69,66,67,69,64,63,65,68,72`

Solution:
Median :
Observations in the ascending order are :
`63,64,65,66,67,68,69,69,72`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=67`


3. Find the Median of `3,23,13,11,15,5,4,2`

Solution:
Median :
Observations in the ascending order are :
`2,3,4,5,11,13,15,23`

Here, `n=8` is even.

`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`

`=(text{Value of } (8/2)^(th) text{ observation} + text{Value of } (8/2 + 1)^(th) text{ observation})/2`

`=(text{Value of }4^(th) text{ observation} + text{Value of }5^(th) text{ observation})/2`

`=(5 + 11)/2`

`=8`







This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Previous example)
4. Mode Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.