Home > Statistical Methods calculators > Mean, Median and Mode for ungrouped data example

Median Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Coefficient of Mean deviation
  9. Quartile deviation, Coefficient of QD, Interquartile range
  10. Decile deviation, Coefficient of DD, Interdecile range
  11. Percentile deviation, Coefficient of PD, Interpercentile range
  12. Five number summary
  13. Box and Whisker Plots
  14. Construct an ungrouped frequency distribution table
  15. Construct a grouped frequency distribution table
  16. Maximum, Minimum
  17. Sum, Length
  18. Range, Mid Range
  19. Stem and leaf plot
  20. Ascending order, Descending order

2. Mean Example
(Previous example)
4. Mode Example
(Next example)

3. Median Example





Median :
After arranging the observations in ascending (or descending) order, then the middle number is called median.
It is denoted by `M`

1. If `n` is odd, then
`M=` value of `((n+1)/2)^(th)` observation

2. If `n` is even, then
`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`


1. Find the Median of `4,14,12,16,6,3,1,2,3`

Solution:
Median :
Observations in the ascending order are :
`1,2,3,3,4,6,12,14,16`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=4`


2. Find the Median of `69,66,67,69,64,63,65,68,72`

Solution:
Median :
Observations in the ascending order are :
`63,64,65,66,67,68,69,69,72`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=67`


3. Find the Median of `3,23,13,11,15,5,4,2`

Solution:
Median :
Observations in the ascending order are :
`2,3,4,5,11,13,15,23`

Here, `n=8` is even.

`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`

`=(text{Value of } (8/2)^(th) text{ observation} + text{Value of } (8/2 + 1)^(th) text{ observation})/2`

`=(text{Value of }4^(th) text{ observation} + text{Value of }5^(th) text{ observation})/2`

`=(5 + 11)/2`

`=8`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Previous example)
4. Mode Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.