1. Calculate Population Coefficient of Variation from the following data
`3,13,11,15,5,4,2`Solution:`x` | `x^2` |
3 | 9 |
13 | 169 |
11 | 121 |
15 | 225 |
5 | 25 |
4 | 16 |
2 | 4 |
--- | --- |
`sum x=53` | `sum x^2=569` |
Mean `bar x=(sum x)/n`
`=(3+13+11+15+5+4+2)/7`
`=53/7`
`=7.5714`
Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`
`=sqrt((569 - (53)^2/7)/7)`
`=sqrt((569 - 401.2857)/7)`
`=sqrt(167.7143/7)`
`=sqrt(23.9592)`
`=4.8948`
Coefficient of Variation (Population) `=sigma / bar x * 100 %`
`=4.8948/7.5714 * 100 %`
`=64.65 %`
2. Calculate Population Coefficient of Variation from the following data
`10,50,30,20,10,20,70,30`Solution:`x` | `x - bar x = x - 30` | `(x - bar x)^2` |
10 | -20 | 400 |
50 | 20 | 400 |
30 | 0 | 0 |
20 | -10 | 100 |
10 | -20 | 400 |
20 | -10 | 100 |
70 | 40 | 1600 |
30 | 0 | 0 |
--- | --- | --- |
`sum x=240` | `sum (x - bar x)=0` | `sum (x - bar x)^2=3000` |
Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(3000/8)`
`=sqrt(375)`
`=19.3649`
Coefficient of Variation (Population) `=sigma / bar x * 100 %`
`=19.3649/30 * 100 %`
`=64.55 %`
3. Calculate Population Coefficient of Variation from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:`x` | `x - bar x = x - 88` | `(x - bar x)^2` |
85 | -3 | 9 |
96 | 8 | 64 |
76 | -12 | 144 |
108 | 20 | 400 |
85 | -3 | 9 |
80 | -8 | 64 |
100 | 12 | 144 |
85 | -3 | 9 |
70 | -18 | 324 |
95 | 7 | 49 |
--- | --- | --- |
`sum x=880` | `sum (x - bar x)=0` | `sum (x - bar x)^2=1216` |
Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(1216/10)`
`=sqrt(121.6)`
`=11.0272`
Coefficient of Variation (Population) `=sigma / bar x * 100 %`
`=11.0272/88 * 100 %`
`=12.53 %`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then