Formula
|
1. Mean `bar x = (sum x)/n`
|
|
2. Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`
|
|
3. Sample Standard deviation `S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))`
|
|
4. Coefficient of Variation (Sample) `=S / bar x * 100 %`
|
Examples
1. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2Solution:| `x` | `x^2` |
| 3 | 9 `9=3xx3` |
| 13 | 169 `169=13xx13` |
| 11 | 121 `121=11xx11` |
| 15 | 225 `225=15xx15` |
| 5 | 25 `25=5xx5` |
| 4 | 16 `16=4xx4` |
| 2 | 4 `4=2xx2` |
| 3 | 9 `9=3xx3` |
| 2 | 4 `4=2xx2` |
| --- | --- |
| `sum x=58` | `sum x^2=582` |
Mean `bar x = (sum x)/n`
`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`
`=58/9`
`=6.4444`
Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`
`=(582 - (58)^2/9)/8`
`=(582 - 373.7778)/8`
`=208.2222/8`
`=26.0278`
Sample Standard deviation `S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))`
`=sqrt((582 - (58)^2/9)/8)`
`=sqrt((582 - 373.7778)/8)`
`=sqrt(208.2222/8)`
`=sqrt(26.0278)`
`=5.1017`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=5.1017/6.4444 * 100 %`
`=79.16 %`
2. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95Solution:| `x` | `x - bar x = x - 88` | `(x - bar x)^2` |
| 85 | -3 `-3=85-88` | 9 `9=-3xx-3` |
| 96 | 8 `8=96-88` | 64 `64=8xx8` |
| 76 | -12 `-12=76-88` | 144 `144=-12xx-12` |
| 108 | 20 `20=108-88` | 400 `400=20xx20` |
| 85 | -3 `-3=85-88` | 9 `9=-3xx-3` |
| 80 | -8 `-8=80-88` | 64 `64=-8xx-8` |
| 100 | 12 `12=100-88` | 144 `144=12xx12` |
| 85 | -3 `-3=85-88` | 9 `9=-3xx-3` |
| 70 | -18 `-18=70-88` | 324 `324=-18xx-18` |
| 95 | 7 `7=95-88` | 49 `49=7xx7` |
| --- | --- | --- |
| `sum x=880` | `sum (x - bar x)=0` | `sum (x - bar x)^2=1216` |
Mean `bar x = (sum x)/n`
`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`
`=880/10`
`=88`
Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`
`=1216/9`
`=135.1111`
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(1216/9)`
`=sqrt(135.1111)`
`=11.6237`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=11.6237/88 * 100 %`
`=13.21 %`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then