Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for ungrouped data example

Sample Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Sample Variance Example
  3. Sample Standard deviation Example
  4. Sample coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

3. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum x)/n`
2. Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`
3. Sample Standard deviation `S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))`
4. Coefficient of Variation (Sample) `=S / bar x * 100 %`

Examples
1. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2


Solution:
`x``x^2`
3 9 `9=3xx3`
13 169 `169=13xx13`
11 121 `121=11xx11`
15 225 `225=15xx15`
5 25 `25=5xx5`
4 16 `16=4xx4`
2 4 `4=2xx2`
3 9 `9=3xx3`
2 4 `4=2xx2`
------
`sum x=58``sum x^2=582`


Mean `bar x = (sum x)/n`

`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`

`=58/9`

`=6.4444`



Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`

`=(582 - (58)^2/9)/8`

`=(582 - 373.7778)/8`

`=208.2222/8`

`=26.0278`



Sample Standard deviation `S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))`

`=sqrt((582 - (58)^2/9)/8)`

`=sqrt((582 - 373.7778)/8)`

`=sqrt(208.2222/8)`

`=sqrt(26.0278)`

`=5.1017`



Coefficient of Variation (Sample) `=S / bar x * 100 %`

`=5.1017/6.4444 * 100 %`

`=79.16 %`
2. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85 -3 `-3=85-88` 9 `9=-3xx-3`
96 8 `8=96-88` 64 `64=8xx8`
76 -12 `-12=76-88` 144 `144=-12xx-12`
108 20 `20=108-88` 400 `400=20xx20`
85 -3 `-3=85-88` 9 `9=-3xx-3`
80 -8 `-8=80-88` 64 `64=-8xx-8`
100 12 `12=100-88` 144 `144=12xx12`
85 -3 `-3=85-88` 9 `9=-3xx-3`
70 -18 `-18=70-88` 324 `324=-18xx-18`
95 7 `7=95-88` 49 `49=7xx7`
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x = (sum x)/n`

`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`

`=880/10`

`=88`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=1216/9`

`=135.1111`



Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(1216/9)`

`=sqrt(135.1111)`

`=11.6237`



Coefficient of Variation (Sample) `=S / bar x * 100 %`

`=11.6237/88 * 100 %`

`=13.21 %`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.