Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for ungrouped data example

Sample Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Sample Variance Example
  3. Sample Standard deviation Example
  4. Sample coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

3. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean bar x = (sum x)/n
2. Sample Variance S^2 = (sum x^2 - (sum x)^2/n)/(n-1)
3. Sample Standard deviation S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))
4. Coefficient of Variation (Sample) =S / bar x * 100 %

Examples
1. Calculate Sample Variance (S^2), Sample Standard deviation (S), Sample Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2


Solution:
xx^2
3 9 9=3xx3
13 169 169=13xx13
11 121 121=11xx11
15 225 225=15xx15
5 25 25=5xx5
4 16 16=4xx4
2 4 4=2xx2
3 9 9=3xx3
2 4 4=2xx2
------
sum x=58sum x^2=582


Mean bar x = (sum x)/n

=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9

=58/9

=6.4444



Sample Variance S^2 = (sum x^2 - (sum x)^2/n)/(n-1)

=(582 - (58)^2/9)/8

=(582 - 373.7778)/8

=208.2222/8

=26.0278



Sample Standard deviation S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))

=sqrt((582 - (58)^2/9)/8)

=sqrt((582 - 373.7778)/8)

=sqrt(208.2222/8)

=sqrt(26.0278)

=5.1017



Coefficient of Variation (Sample) =S / bar x * 100 %

=5.1017/6.4444 * 100 %

=79.16 %
2. Calculate Sample Variance (S^2), Sample Standard deviation (S), Sample Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
xx - bar x = x - 88(x - bar x)^2
85 -3 -3=85-88 9 9=-3xx-3
96 8 8=96-88 64 64=8xx8
76 -12 -12=76-88 144 144=-12xx-12
108 20 20=108-88 400 400=20xx20
85 -3 -3=85-88 9 9=-3xx-3
80 -8 -8=80-88 64 64=-8xx-8
100 12 12=100-88 144 144=12xx12
85 -3 -3=85-88 9 9=-3xx-3
70 -18 -18=70-88 324 324=-18xx-18
95 7 7=95-88 49 49=7xx7
---------
sum x=880sum (x - bar x)=0sum (x - bar x)^2=1216


Mean bar x = (sum x)/n

=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10

=880/10

=88



Sample Variance S^2 = (sum (x - bar x)^2)/(n-1)

=1216/9

=135.1111



Sample Standard deviation S = sqrt((sum (x - bar x)^2)/(n-1))

=sqrt(1216/9)

=sqrt(135.1111)

=11.6237



Coefficient of Variation (Sample) =S / bar x * 100 %

=11.6237/88 * 100 %

=13.21 %


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.