|
|
Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for ungrouped data example
|
|
Sample Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example
( Enter your problem )
|
- Formula & Example
- Sample Variance Example
- Sample Standard deviation Example
- Sample coefficient of variation Example
|
Other related methods
- Mean, Median and Mode
- Quartile, Decile, Percentile, Octile, Quintile
- Population Variance, Standard deviation and coefficient of variation
- Sample Variance, Standard deviation and coefficient of variation
- Population Skewness, Kurtosis
- Sample Skewness, Kurtosis
- Geometric mean, Harmonic mean
- Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
- Five number summary
- Box and Whisker Plots
- Construct an ungrouped frequency distribution table
- Construct a grouped frequency distribution table
- Maximum, Minimum
- Sum, Length
- Range, Mid Range
- Stem and leaf plot
- Ascending order, Descending order
|
|
1. Formula & Example
Formula
1. Mean bar x = (sum x)/n
|
2. Sample Variance S^2 = (sum x^2 - (sum x)^2/n)/(n-1)
|
3. Sample Standard deviation S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))
|
4. Coefficient of Variation (Sample) =S / bar x * 100 %
|
Examples
1. Calculate Sample Variance (S^2), Sample Standard deviation (S), Sample Coefficient of Variation from the following data 3,13,11,15,5,4,2,3,2
Solution:
x | x^2 | 3 | 9 9=3xx3 | 13 | 169 169=13xx13 | 11 | 121 121=11xx11 | 15 | 225 225=15xx15 | 5 | 25 25=5xx5 | 4 | 16 16=4xx4 | 2 | 4 4=2xx2 | 3 | 9 9=3xx3 | 2 | 4 4=2xx2 | --- | --- | sum x=58 | sum x^2=582 |
Mean bar x = (sum x)/n
=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9
=58/9
=6.4444
Sample Variance S^2 = (sum x^2 - (sum x)^2/n)/(n-1)
=(582 - (58)^2/9)/8
=(582 - 373.7778)/8
=208.2222/8
=26.0278
Sample Standard deviation S = sqrt((sum x^2 - (sum x)^2/n)/(n-1))
=sqrt((582 - (58)^2/9)/8)
=sqrt((582 - 373.7778)/8)
=sqrt(208.2222/8)
=sqrt(26.0278)
=5.1017
Coefficient of Variation (Sample) =S / bar x * 100 %
=5.1017/6.4444 * 100 %
=79.16 %
2. Calculate Sample Variance (S^2), Sample Standard deviation (S), Sample Coefficient of Variation from the following data 85,96,76,108,85,80,100,85,70,95
Solution:
x | x - bar x = x - 88 | (x - bar x)^2 | 85 | -3 -3=85-88 | 9 9=-3xx-3 | 96 | 8 8=96-88 | 64 64=8xx8 | 76 | -12 -12=76-88 | 144 144=-12xx-12 | 108 | 20 20=108-88 | 400 400=20xx20 | 85 | -3 -3=85-88 | 9 9=-3xx-3 | 80 | -8 -8=80-88 | 64 64=-8xx-8 | 100 | 12 12=100-88 | 144 144=12xx12 | 85 | -3 -3=85-88 | 9 9=-3xx-3 | 70 | -18 -18=70-88 | 324 324=-18xx-18 | 95 | 7 7=95-88 | 49 49=7xx7 | --- | --- | --- | sum x=880 | sum (x - bar x)=0 | sum (x - bar x)^2=1216 |
Mean bar x = (sum x)/n
=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10
=880/10
=88
Sample Variance S^2 = (sum (x - bar x)^2)/(n-1)
=1216/9
=135.1111
Sample Standard deviation S = sqrt((sum (x - bar x)^2)/(n-1))
=sqrt(1216/9)
=sqrt(135.1111)
=11.6237
Coefficient of Variation (Sample) =S / bar x * 100 %
=11.6237/88 * 100 %
=13.21 %
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|