Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for ungrouped data example

Sample Variance Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Variance Example
  3. Sample Standard deviation Example
  4. Sample coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order

1. Formula & Example
(Previous example)
3. Sample Standard deviation Example
(Next example)

2. Sample Variance Example





1. Calculate Sample Variance `(S^2)` from the following data
`3,13,11,15,5,4,2`


Solution:
`x``x^2`
39
13169
11121
15225
525
416
24
------
`sum x=53``sum x^2=569`


Mean `bar x=(sum x)/n`

`=(3+13+11+15+5+4+2)/7`

`=53/7`

`=7.5714`



Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`

`=(569 - (53)^2/7)/6`

`=(569 - 401.2857)/6`

`=167.7143/6`

`=27.9524`


2. Calculate Sample Variance `(S^2)` from the following data
`10,50,30,20,10,20,70,30`


Solution:
`x``x - bar x = x - 30``(x - bar x)^2`
10-20400
5020400
3000
20-10100
10-20400
20-10100
70401600
3000
---------
`sum x=240``sum (x - bar x)=0``sum (x - bar x)^2=3000`


Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=3000/7`

`=428.5714`


3. Calculate Sample Variance `(S^2)` from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85-39
96864
76-12144
10820400
85-39
80-864
10012144
85-39
70-18324
95749
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=1216/9`

`=135.1111`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Sample Standard deviation Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.