1. Calculate Sample Variance `(S^2)` from the following data
`3,13,11,15,5,4,2`Solution:`x` | `x^2` |
3 | 9 |
13 | 169 |
11 | 121 |
15 | 225 |
5 | 25 |
4 | 16 |
2 | 4 |
--- | --- |
`sum x=53` | `sum x^2=569` |
Mean `bar x=(sum x)/n`
`=(3+13+11+15+5+4+2)/7`
`=53/7`
`=7.5714`
Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`
`=(569 - (53)^2/7)/6`
`=(569 - 401.2857)/6`
`=167.7143/6`
`=27.9524`
2. Calculate Sample Variance `(S^2)` from the following data
`10,50,30,20,10,20,70,30`Solution:`x` | `x - bar x = x - 30` | `(x - bar x)^2` |
10 | -20 | 400 |
50 | 20 | 400 |
30 | 0 | 0 |
20 | -10 | 100 |
10 | -20 | 400 |
20 | -10 | 100 |
70 | 40 | 1600 |
30 | 0 | 0 |
--- | --- | --- |
`sum x=240` | `sum (x - bar x)=0` | `sum (x - bar x)^2=3000` |
Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`
`=3000/7`
`=428.5714`
3. Calculate Sample Variance `(S^2)` from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:`x` | `x - bar x = x - 88` | `(x - bar x)^2` |
85 | -3 | 9 |
96 | 8 | 64 |
76 | -12 | 144 |
108 | 20 | 400 |
85 | -3 | 9 |
80 | -8 | 64 |
100 | 12 | 144 |
85 | -3 | 9 |
70 | -18 | 324 |
95 | 7 | 49 |
--- | --- | --- |
`sum x=880` | `sum (x - bar x)=0` | `sum (x - bar x)^2=1216` |
Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`
`=1216/9`
`=135.1111`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then