Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for ungrouped data example

Sample Variance Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Variance Example
  3. Sample Standard deviation Example
  4. Sample coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

1. Formula & Example
(Previous example)
3. Sample Standard deviation Example
(Next example)

2. Sample Variance Example





1. Calculate Sample Variance `(S^2)` from the following data
`3,13,11,15,5,4,2`


Solution:
`x``x^2`
39
13169
11121
15225
525
416
24
------
`sum x=53``sum x^2=569`


Mean `bar x=(sum x)/n`

`=(3+13+11+15+5+4+2)/7`

`=53/7`

`=7.5714`



Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`

`=(569 - (53)^2/7)/6`

`=(569 - 401.2857)/6`

`=167.7143/6`

`=27.9524`


2. Calculate Sample Variance `(S^2)` from the following data
`10,50,30,20,10,20,70,30`


Solution:
`x``x - bar x = x - 30``(x - bar x)^2`
10-20400
5020400
3000
20-10100
10-20400
20-10100
70401600
3000
---------
`sum x=240``sum (x - bar x)=0``sum (x - bar x)^2=3000`


Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=3000/7`

`=428.5714`


3. Calculate Sample Variance `(S^2)` from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85-39
96864
76-12144
10820400
85-39
80-864
10012144
85-39
70-18324
95749
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=1216/9`

`=135.1111`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Sample Standard deviation Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.