Home > Statistical Methods calculators > Population Skewness, Kurtosis for ungrouped data example

Population Kurtosis Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Population Skewness Example
  3. Population Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Coefficient of Mean deviation
  9. Quartile deviation, Coefficient of QD, Interquartile range
  10. Decile deviation, Coefficient of DD, Interdecile range
  11. Percentile deviation, Coefficient of PD, Interpercentile range
  12. Five number summary
  13. Box and Whisker Plots
  14. Construct an ungrouped frequency distribution table
  15. Construct a grouped frequency distribution table
  16. Maximum, Minimum
  17. Sum, Length
  18. Range, Mid Range
  19. Stem and leaf plot
  20. Ascending order, Descending order

2. Population Skewness Example
(Previous example)
6. Sample Skewness, Kurtosis
(Next method)

3. Population Kurtosis Example





1. Calculate Population Kurtosis from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``(x - bar x)`
`= (x - 88)`
`(x - bar x)^2`
`= (x - 88)^2`
`(x - bar x)^3`
`= (x - 88)^3`
`(x - bar x)^4`
`= (x - 88)^4`
85-39-2781
968645124096
76-12144-172820736
108204008000160000
85-39-2781
80-864-5124096
10012144172820736
85-39-2781
70-18324-5832104976
957493432401
---------------
880012162430317284


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(1216/10)`

`=sqrt(121.6)`

`=11.0272`



Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

`=317284/(10*(11.0272)^4)`

`=317284/(10*14786.56)`

`=2.1458`


2. Calculate Population Kurtosis from the following data
`10,50,30,20,10,20,70,30`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``(x - bar x)`
`= (x - 30)`
`(x - bar x)^2`
`= (x - 30)^2`
`(x - bar x)^3`
`= (x - 30)^3`
`(x - bar x)^4`
`= (x - 30)^4`
10-20400-8000160000
50204008000160000
300000
20-10100-100010000
10-20400-8000160000
20-10100-100010000
70401600640002560000
300000
---------------
24003000540003060000


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(3000/8)`

`=sqrt(375)`

`=19.3649`



Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

`=3060000/(8*(19.3649)^4)`

`=3060000/(8*140625)`

`=2.72`


3. Calculate Population Kurtosis from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(73+70+71+73+68+67+69+72+76+71)/10`

`=710/10`

`=71`

`x``(x - bar x)`
`= (x - 71)`
`(x - bar x)^2`
`= (x - 71)^2`
`(x - bar x)^3`
`= (x - 71)^3`
`(x - bar x)^4`
`= (x - 71)^4`
7324816
70-11-11
710000
7324816
68-39-2781
67-416-64256
69-24-816
721111
76525125625
710000
---------------
710064421012


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(64/10)`

`=sqrt(6.4)`

`=2.5298`



Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

`=1012/(10*(2.5298)^4)`

`=1012/(10*40.96)`

`=2.4707`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Population Skewness Example
(Previous example)
6. Sample Skewness, Kurtosis
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.