Home > Statistical Methods calculators > Geometric mean, Harmonic mean for ungrouped data example

Geometric mean, Harmonic mean for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Geometric mean Example
  3. Harmonic mean Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Coefficient of Mean deviation
  9. Quartile deviation, Coefficient of QD, Interquartile range
  10. Decile deviation, Coefficient of DD, Interdecile range
  11. Percentile deviation, Coefficient of PD, Interpercentile range
  12. Five number summary
  13. Box and Whisker Plots
  14. Construct an ungrouped frequency distribution table
  15. Construct a grouped frequency distribution table
  16. Maximum, Minimum
  17. Sum, Length
  18. Range, Mid Range
  19. Stem and leaf plot
  20. Ascending order, Descending order

6. Sample Skewness, Kurtosis
(Previous method)
2. Geometric mean Example
(Next example)

1. Formula & Example






Examples
1. Calculate Geometric mean, Harmonic mean from the following data
3,13,11,15,5,4,2


Solution:
`x``log(x)``1/x`
31.09860.3333
132.56490.0769
112.39790.0909
152.70810.0667
51.60940.2
41.38630.25
20.69310.5
---------
`sum log(x)=12.4584``sum 1/x=1.5178`


GM of X `= Antilog((sum flog(x))/(sum f))`

`= Antilog((12.4584)/(7))`

`= Antilog(1.7798)`

`= 5.9285`



HM of X `= (sum f)/(sum (f/x))`

`=(7)/(1.5178)`

`=4.6118`
2. Calculate Geometric mean, Harmonic mean from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``log(x)``1/x`
854.44270.0118
964.56430.0104
764.33070.0132
1084.68210.0093
854.44270.0118
804.3820.0125
1004.60520.01
854.44270.0118
704.24850.0143
954.55390.0105
---------
`sum log(x)=44.6947``sum 1/x=0.1154`


GM of X `= Antilog((sum flog(x))/(sum f))`

`= Antilog((44.6947)/(10))`

`= Antilog(4.4695)`

`= 87.3107`



HM of X `= (sum f)/(sum (f/x))`

`=(10)/(0.1154)`

`=86.6251`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Sample Skewness, Kurtosis
(Previous method)
2. Geometric mean Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.