Home > Statistical Methods calculators > Geometric mean, Harmonic mean for ungrouped data example

Geometric mean, Harmonic mean for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Geometric mean Example
  3. Harmonic mean Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order

10. Sample Skewness, Kurtosis
(Previous method)
2. Geometric mean Example
(Next example)

1. Formula & Example






Examples
1. Calculate Geometric mean, Harmonic mean from the following data
3,13,11,15,5,4,2


Solution:
`x``log(x)``1/x`
31.09860.3333
132.56490.0769
112.39790.0909
152.70810.0667
51.60940.2
41.38630.25
20.69310.5
---------
`sum log(x)=12.4584``sum 1/x=1.5178`


GM of X `= Antilog((sum flog(x))/(sum f))`

`= Antilog((12.4584)/(7))`

`= Antilog(1.7798)`

`= 5.9285`



HM of X `= (sum f)/(sum (f/x))`

`=(7)/(1.5178)`

`=4.6118`
2. Calculate Geometric mean, Harmonic mean from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``log(x)``1/x`
854.44270.0118
964.56430.0104
764.33070.0132
1084.68210.0093
854.44270.0118
804.3820.0125
1004.60520.01
854.44270.0118
704.24850.0143
954.55390.0105
---------
`sum log(x)=44.6947``sum 1/x=0.1154`


GM of X `= Antilog((sum flog(x))/(sum f))`

`= Antilog((44.6947)/(10))`

`= Antilog(4.4695)`

`= 87.3107`



HM of X `= (sum f)/(sum (f/x))`

`=(10)/(0.1154)`

`=86.6251`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



10. Sample Skewness, Kurtosis
(Previous method)
2. Geometric mean Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.