Home > Algebra calculators > Variation equations example - If x proportion y, then prove that x^3+y^3 proportion x^2y-xy^2

3. Variation equations - If `x prop y`, then prove that `x^3+y^3 prop x^2y-xy^2` example ( Enter your problem )
  1. Examples
Other related methods
  1. Definition
  2. If `x prop y` and x=4,y=2 then find y when x=18
  3. If `x prop y`, then prove that `x^3+y^3 prop x^2y-xy^2`

2. If `x prop y` and x=4,y=2 then find y when x=18
(Previous method)

1. Examples





1. If `x prop y,` then prove that `x^3+y^3 prop x^2y-xy^2`

`x prop y`

`=> x=M*y` (where constant `M != 0`)

Now `(x^3+y^3) / (x^2y-xy^2)`

`= (M^3y^3+y^3) / (M^2y^3-My^3)`

`= (y^3(M^3+1)) / (My^3(M-1))`

`= ((M^3+1)) / (M(M-1))`

`=` non-zero constant

`:. x^3+y^3 prop x^2y-xy^2`


2. If `x prop y,y prop z,` then prove that `x^3+y^3+z^3 prop xyz`

Solution:
`x prop y,y prop z`

`=>x=M*y` (where constant `M != 0`)

And `y=N*z` (where constant `N != 0`)

substituting `y=Nz` in `x=My`, We get `x=M(Nz)=MNz`

Now `(x^3+y^3+z^3) / (xyz)`

`= (M^3N^3z^3+N^3z^3+z^3) / (MN^2z^3)`

`= (z^3(M^3N^3+N^3+1)) / (MN^2z^3)`

`= ((M^3N^3+N^3+1)) / (MN^2)`

`=` non-zero constant

`:. x^3+y^3+z^3 prop xyz`


3. If `5x-7y prop 6x+3y,` then prove that `x prop y`

`5x-7y prop 6x+3y`

`=> 5x-7y = M(6x+3y)` (where constant `M != 0`)

`=> 5x-7y = 6Mx+3My`

`=> 5x-6Mx = 7y+3My`

`=> x(5-6M) = y(7+3M)`

`=> x/y = (7+3M) / (5-6M)`

`=> x/y = `non-zero constant

`=> x prop y`


4. If `x^2+9y^2 prop xy,` then prove that `x prop y`

Solution:
`x^2+9y^2 prop xy`

`=>x^2+9y^2=Mxy` (where constant `M != 0`)

`=> (x^2+9y^2) / (xy) = M`

`=> (x^2+9y^2) / (6xy) = M/6` (multiplying by `1/6`)

`=> (x^2+9y^2+6xy) / (x^2+9y^2-6xy) = (M+6)/(M-6)` (componendo and dividendo)

`=> (x+3y)^2 / (x-3y)^2 = (M+6)/(M-6)`

`=> (x+3y) / (x-3y) = sqrt((M+6)/(M-6))`

`=> (x+3y) / (x-3y) = N` (where `N=sqrt((M+6)/(M-6))` and `N!=0, M != +- 6, x != +- 3y`)

`=> (x+3y+x-3y) / (x+3y-x+3y) = (N+1)/(N-1)` (componendo and dividendo)

`=>2x / 6y = (N+1)/(N-1)`

`=>x / 3y = (N+1)/(N-1)`

`=>x / y=3((N+1)/(N-1))`

`=>x/y = `non-zero constant

`=>x prop y`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. If `x prop y` and x=4,y=2 then find y when x=18
(Previous method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.