1. Find DIRECTIONCOSINES(B)
`B=(4,3)`,`C=(3,4)`
Solution:
Here `vec A=(3,4),vec B=(4,3),vec C=(3,4)`
1. Calculate the magnitude(length) of vector `vec B`
`|vec B|`
`=sqrt(B_1^2 + B_2^2)`
`=sqrt(4^2 + 3^2)`
`=sqrt(16 + 9)`
`=sqrt(25)`
`=5`
2. Calculate the direction cosines of vector `vec B`
`cos alpha=(B_1)/(|vec B|)=4/5`
`cos beta=(B_2)/(|vec B|)=3/5`
2. Find DIRECTIONCOSINES(B)
`B=(2,2,1)`,`C=(1,2,2)`
Solution:
Here `vec A=(1,2,2),vec B=(2,2,1),vec C=(1,2,2)`
1. Calculate the magnitude(length) of vector `vec B`
`|vec B|`
`=sqrt(B_1^2 + B_2^2 + B_3^2)`
`=sqrt(2^2 + 2^2 + 1^2)`
`=sqrt(4 + 4 + 1)`
`=sqrt(9)`
`=3`
2. Calculate the direction cosines of vector `vec B`
`cos alpha=(B_1)/(|vec B|)=2/3`
`cos beta=(B_2)/(|vec B|)=2/3`
`cos gamma=(B_3)/(|vec B|)=1/3`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then