1. Find Decompose(A,B,C)
`A=(3,7)`,`B=(-1,2)`,`C=(3,20)`Solution:Here `vec A=(3,7),vec B=(-1,2),vec C=(3,20)`
Form equation from vectors
`vec C = x vec A + y vec B`
So system of linear equations are
`3x-1y=3`
`7x+2y=20`
Solution of equations using Elimination method
Total Equations are `2`
`3x-y=3 -> (1)`
`7x+2y=20 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `y`.
`3x-y=3` | ` xx 2->` | | `` | `6x` | `-` | `2y` | `=` | `6` | `` |
| | + | |
`7x+2y=20` | ` xx 1->` | | `` | `7x` | `+` | `2y` | `=` | `20` | `` |
| | |
|
| | | `` | `13x` | | | `=` | `26` | ` -> (3)` |
Now use back substitution method
From (3)
`13x=26`
`=>x=(26)/(13)=2`
From (1)
`3x-y=3`
`=>3(2)-y=3`
`=>-y+6=3`
`=>-y=3-6=-3`
`=>y=3`
Solution using Elimination method.
`x=2,y=3`
`x=2,y=3`
So, `vec C=2vec (A) +3vec (B)`
2. Find DECOMPOSE(B,C,A)
`A=(1,2)`,`B=(3,1)`,`C=(8,1)`Solution:Here `vec A=(1,2),vec B=(3,1),vec C=(8,1)`
Form equation from vectors
`vec A = x vec B + y vec C`
So system of linear equations are
`3x+8y=1`
`x+y=2`
Solution of equations using Elimination method
Total Equations are `2`
`3x+8y=1 -> (1)`
`x+y=2 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`.
`3x+8y=1` | ` xx 1->` | | `` | `3x` | `+` | `8y` | `=` | `1` | `` |
| | − | |
`x+y=2` | ` xx 3->` | | `` | `3x` | `+` | `3y` | `=` | `6` | `` |
| | |
|
| | | | | `` | `5y` | `=` | `-5` | ` -> (3)` |
Now use back substitution method
From (3)
`5y=-5`
`=>y=(-5)/(5)=-1`
From (2)
`x+y=2`
`=>x+(-1)=2`
`=>x-1=2`
`=>x=2+1=3`
Solution using Elimination method.
`x=3,y=-1`
`x=3,y=-1`
So, `vec A=3vec (B) -vec (C)`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then