2. Example-2
1. Find ISORTHOGONAL(A,B) `A=(4,2)`,`B=(3,-6)`
Solution: Here `vec A=(4,2),vec B=(3,-6),vec C=(1,2)`
Two vectors `vec A` and `vec B` are orthogonal, if their dot product is zero. i.e. `vec A * vec B = 0`
1. Calculate dot product `vec A * vec B`
`=A_1*B_1+A_2*B_2`
`=4*3+2*(-6)`
`=12+-12`
`=0`
Here dot product is zero, so vectors are orthogonal
2. Find ISORTHOGONAL(A,B) `A=(3,4,0)`,`B=(2,2,1)`
Solution: Here `vec A=(3,4,0),vec B=(2,2,1),vec C=(3,4,0)`
Two vectors `vec A` and `vec B` are orthogonal, if their dot product is zero. i.e. `vec A * vec B = 0`
1. Calculate dot product `vec A * vec B`
`=A_1*B_1+A_2*B_2+A_3*B_3`
`=3*2+4*2+0*1`
`=6+8+0`
`=14``!=0`
Here dot product is not zero, so vectors are not orthogonal
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|