2. Example-2
1. Find VolumeParallelepiped(A,B,C) `A=(5,6,1)`,`B=(0,2,3)`,`C=(3,4,5)`
Solution: Here `vec A=(5,6,1),vec B=(0,2,3),vec C=(3,4,5)`
Volume `=|vec C * (vec A xx vec B)|`
1. Calculate scalar triple product `C*(A xx B)`
`=|[C_1,C_2,C_3],[A_1,A_2,A_3],[B_1,B_2,B_3]|`
`=|[3,4,5],[5,6,1],[0,2,3]|`
`=3(6xx3-1xx2)-4(5xx3-1xx0)+5(5xx2-6xx0)`
`=3(18-2)-4(15-0)+5(10-0)`
`=3(16)-4(15)+5(10)`
`=48-60+50`
`=38`
2. Calculate parallelepiped volume Volume `=38`
2. Find VOLUMEPARALLELEPIPED(A,B,C) `A=(0,2,3)`,`B=(5,6,1)`,`C=(1,5,6)`
Solution: Here `vec A=(0,2,3),vec B=(5,6,1),vec C=(1,5,6)`
Volume `=|vec C * (vec A xx vec B)|`
1. Calculate scalar triple product `C*(A xx B)`
`=|[C_1,C_2,C_3],[A_1,A_2,A_3],[B_1,B_2,B_3]|`
`=|[1,5,6],[0,2,3],[5,6,1]|`
`=1(2xx1-3xx6)-5(0xx1-3xx5)+6(0xx6-2xx5)`
`=1(2-18)-5(0-15)+6(0-10)`
`=1(-16)-5(-15)+6(-10)`
`=-16+75-60`
`=-1`
2. Calculate parallelepiped volume Volume `=1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|