Home > Numerical methods calculators > Numerical Interpolation using Newton's Backward Difference formula example

2. Newton's Backward Difference formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Newton's Forward Difference formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Newton's Backward Difference formula
`p = (x - x_n) / h`
`y(x) = y_n + p grad y_n + (p(p + 1))/(2!) * grad^2y_n + (p(p + 1)(p + 2))/(3!) * grad^3y_n + (p(p + 1)(p + 2)(p + 3))/(4!) * grad^4y_n + ...`

Examples
1. Find Solution using Newton's Backward Difference formula
xf(x)
189146
190166
191181
192193
1931101

x = 1925


Solution:
The value of table for `x` and `y`

x18911901191119211931
y46668193101

Newton's backward difference interpolation method to find solution

Newton's backward difference table is
xy`grady``grad^2y``grad^3y``grad^4y`
1891`46`
`20`
1901`66``-5`
`15``2`
1911`81``-3``-3`
`12``-1`
1921`93``-4`
`8`
1931`101`


The value of x at you want to find the `f(x) : x = 1925`

`h = x_1 - x_0 = 1901 - 1891 = 10`

`p = (x - x_n) / h = (1925 - 1931) / 10 = -0.6`

Newton's backward difference interpolation formula is
`y(x) = y_n + p grad y_n + (p(p + 1))/(2!) * grad^2y_n + (p(p + 1)(p + 2))/(3!) * grad^3y_n + (p(p + 1)(p + 2)(p + 3))/(4!) * grad^4y_n`

`y(1925) = 101 + (-0.6) xx 8 + (-0.6 (-0.6 + 1))/(2) xx -4 + (-0.6 (-0.6 + 1)(-0.6 + 2))/(6) xx -1 + (-0.6 (-0.6 + 1)(-0.6 + 2)(-0.6 + 3))/(24) xx -3`

`y(1925) = 101 -4.8 +0.48 +0.056 +0.1008`

`y(1925) = 96.8368`


Solution of newton's backward interpolation method `y(1925) = 96.8368`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Newton's Forward Difference formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.