Home > Numerical methods calculators > Numerical Interpolation using Bessel's formula example

9. Bessel's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

8. Stirling's formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Bessel's formula
`p = (x - x_0)/h`
`y_p=(y_0+y_1)/2+(p-1/2)*Delta y_0 + (p(p-1))/(2!) * (Delta^2y_(-1)+Delta^2y_(0))/2 + ((p-1/2)p(p-1))/(3!) * Delta^3y_(-1) + ((p+1)p(p-1)(p-2))/(4!) * (Delta^4y_(-2)+Delta^4y_(-1))/2 + ((p-1/2)(p+1)p(p-1)(p-2))/(5!) * Delta^5y_(-2) + ...`

Examples
1. Find Solution using Bessel's formula
xf(x)
202854
243162
283544
323992

x = 25


Solution:
The value of table for `x` and `y`

x20242832
y2854316235443992

Bessel's method to find solution

`h=24-20=4`

Taking `x_0=24` then `p=(x-x_0)/h=(x-24)/4`

The difference table is
`x``p=(x-24)/4``y``Deltay``Delta^2y``Delta^3y`
20-12854
308
240316274
382-8
281354466
448
3223992


`x = 25`

`p = (x - x_0)/h = (25 - 24)/4 = 0.25`

`y_0=3162, Delta y_0=382,Delta^2y_(-1)=74,Delta^3y_(-1)=-8`

Bessel's formula is
`y_p=(y_0+y_1)/2+(p-1/2)*Delta y_0 + (p(p-1))/(2!) * (Delta^2y_(-1)+Delta^2y_(0))/2 + ((p-1/2)p(p-1))/(3!) * Delta^3y_(-1)`

`y_(0.25) = (3162+3544)/2 + (0.25-1/2)*(382) + (0.25(0.25-1))/(2)*((74+66))/2 + ((0.25-1/2)0.25(0.25-1))/(6)*(-8)`

`y_(0.25)=3353-95.5 -6.5625 -0.0625`

`y_(0.25)=3250.875`


Solution of Bessel's interpolation is `y(25) = 3250.875`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



8. Stirling's formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.