Home > Numerical methods calculators > Numerical Interpolation using Bessel's formula example

9. Bessel's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
4. Example-4
(Next example)

3. Example-3





Find Solution using Bessel's formula
xf(x)
1020.9848
1122.9816
1224.9781
1326.9743
1428.9702

x = 12.3
Finding f(2)


Solution:
The value of table for `x` and `y`

x1011121314
y20.984822.981624.978126.974328.9702

Bessel's method to find solution

`h=11-10=1`

Taking `x_0=12` then `p=(x-x_0)/h=(x-12)/1`

The difference table is
`x``p=(x-12)/1``y``Deltay``Delta^2y``Delta^3y`
10-220.9848
1.9968
11-122.9816-0.0003
1.99650
12024.9781-0.0003
1.99620
13126.9743-0.0003
1.9959
14228.9702


`x = 12.3`

`p = (x - x_0)/h = (12.3 - 12)/1 = 0.3`

`y_0=24.9781, Delta y_0=1.9962,Delta^2y_(-1)=-0.0003,Delta^3y_(-1)=0`

Bessel's formula is
`y_p=(y_0+y_1)/2+(p-1/2)*Delta y_0 + (p(p-1))/(2!) * (Delta^2y_(-1)+Delta^2y_(0))/2 + ((p-1/2)p(p-1))/(3!) * Delta^3y_(-1)`

`y_(0.3) = (24.9781+26.9743)/2 + (0.3-1/2)*(1.9962) + (0.3(0.3-1))/(2)*((-0.0003))/2 + ((0.3-1/2)0.3(0.3-1))/(6)*(0)`

`y_(0.3)=25.9762-0.39924 +0.0000315 +0`

`y_(0.3)=25.577`


Solution of Bessel's interpolation is `y(12.3) = 25.577`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
4. Example-4
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.