Formula
    
        | Newton's Divided Difference Interpolation formula | 
    
        | `y(x) = y_0  + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2] + ...` | 
Examples
1. Find Solution using Newton's Divided Difference Interpolation formula 
| x | f(x) | 
| 300 | 2.4771 | 
| 304 | 2.4829 | 
| 305 | 2.4843 | 
| 307 | 2.4871 | 
x = 301Solution:The value of table for `x` and `y`
| x | 300 | 304 | 305 | 307 | 
|---|
| y | 2.4771 | 2.4829 | 2.4843 | 2.4871 | 
|---|
Numerical divided differences method to find solution
Newton's divided difference table is
| x | y | `1^(st)` order | `2^(nd)` order | 
| 300 | 2.4771 |  |  | 
|  |  | `(2.4829-2.4771)/(304-300)=0.0014` |  | 
| 304 | 2.4829 |  | `(0.0014-0.0014)/(305-300)=0` | 
|  |  | `(2.4843-2.4829)/(305-304)=0.0014` |  | 
| 305 | 2.4843 |  | `(0.0014-0.0014)/(307-304)=0` | 
|  |  | `(2.4871-2.4843)/(307-305)=0.0014` |  | 
| 307 | 2.4871 |  |  | 
The value of `x` at you want to find the `f(x) : x = 301`
Newton's divided difference interpolation formula is
`f(x)=y_0 +(x-x_0) f[x_0, x_1]+(x-x_0)(x-x_1) f[x_0, x_1, x_2]`
`y(301) = 2.4771 + (301 -300) xx 0.0014 + (301 -300)(301 -304) xx 0`
`y(301) = 2.4771 + (1) xx 0.0014 + (1)(-3) xx 0`
`y(301) = 2.4771 +0.0014 +0`
`y(301) = 2.4785`
Solution of divided difference interpolation method `y(301) = 2.4785`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then