Home > Numerical methods calculators > Numerical Interpolation using Everett's formula example

10. Everett's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





2. Find Solution using Everett's formula
xf(x)
254
263.846
273.704
283.571
293.448
303.333

x = 27.4


Solution:
The value of table for `x` and `y`

x252627282930
y43.8463.7043.5713.4483.333

Everett method to find solution

`h=26-25=1`

Taking `x_0=27` then `p=(x-x_0)/h=(x-27)/1`

Now the central difference table is
`x``p=(x-27)/1``y``Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y`
25-24
-0.154
26-13.8460.012
-0.142-0.003
2703.7040.0090.004
-0.1330.001-0.007
2813.5710.01-0.003
-0.123-0.002
2923.4480.008
-0.115
3033.333


`x = 27.4`

`p = (x - x_0)/h = (27.4 - 27)/1 = 0.4`

`y_0=3.704, Delta y_0=-0.133,Delta^2y_(-1)=0.009,Delta^4y_(-2)=0.004`

Everett interpolation formula is
`y_p=qy_0 + (q(q^2 - 1^2))/(3!) * Delta^2y_(-1) + (q(q^2 - 1^2)(q^2 - 2^2))/(5!) * Delta^4y_(-2)+...+py_1 + (p(p^2 - 1^2))/(3!) * Delta^2y_(0) + (p(p^2 - 1^2)(p^2 - 2^2))/(5!) * Delta^4y_(-1)+...`

`y_(0.4) = (0.6)*(3.704) + ((0.6)(0.36 - 1))/(6) * (0.009) + ((0.6)(0.36 - 1)(0.36 - 4))/(120) * (0.004)+...+(0.4)*(3.571) + ((0.4)(0.16 - 1))/(6) * (0.01) + ((0.4)(0.16 - 1)(0.16 - 4))/(120) * (-0.003)+...`

`y_(0.4)=2.2224 -0.000576 +0.000046592 + 1.4284 -0.00056 -0.000032256`

`y_(0.4)=3.64968`


Solution of Everett interpolation is `y(27.4) = 3.64968`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.