Home > Numerical methods calculators > Numerical Interpolation using Everett's formula example

10. Everett's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
11. Hermite's formula
(Next method)

3. Example-3





Find Solution using Everett's formula
xf(x)
3102.49136
3202.50515
3302.51851
3402.53148
3502.54407
3602.55630

x = 337.5
Finding f(2)


Solution:
The value of table for `x` and `y`

x310320330340350360
y2.49142.50522.51852.53152.54412.5563

Everett method to find solution

`h=320-310=10`

Taking `x_0=330` then `p=(x-x_0)/h=(x-330)/10`

Now the central difference table is
`x``p=(x-330)/10``y``Deltay``Delta^2y``Delta^3y`
310-22.4914
0.0138
320-12.5052-0.0004
0.01340
33002.5185-0.0004
0.0130
34012.5315-0.0004
0.01260
35022.5441-0.0004
0.0122
36032.5563


`x = 337.5`

`p = (x - x_0)/h = (337.5 - 330)/10 = 0.75`

`q=1-p=1-0.75=0.25`

`y_0=2.5185, Delta y_0=0.013,Delta^2y_(-1)=-0.0004`

Everett interpolation formula is
`y_p=qy_0 + (q(q^2 - 1^2))/(3!) * Delta^2y_(-1)+...+py_1 + (p(p^2 - 1^2))/(3!) * Delta^2y_(0)+...`

`y_(0.75) = (0.25)*(2.5185) + ((0.25)(0.0625 - 1))/(6) * (-0.0004)+...+(0.75)*(2.5315) + ((0.75)(0.5625 - 1))/(6) * (-0.0004)+...`

`y_(0.75)=0.6296 +0.0000152344 + 1.8986 +0.0000207813`

`y_(0.75)=2.5283`


Solution of Everett interpolation is `y(337.5) = 2.5283`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
11. Hermite's formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.