Home > Numerical methods calculators > Numerical Interpolation using Gauss Backward formula example

7. Gauss Backward formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

6. Gauss Forward formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Gauss Backward formula
`p = (x - x_0)/h`
`y_p=y_0+p Delta y_(-1) + ((p + 1)p)/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-2) + ((p + 2)(p + 1)p(p - 1))/(4!) * Delta^4y_(-2) + ((p + 2)(p + 1)p(p - 1)(p - 2))/(5!) * Delta^5y_(-3) + ...`

Examples
1. Find Solution using Gauss Backward formula
xf(x)
194017
195020
196027
197032
198036
199038

x = 1976


Solution:
The value of table for `x` and `y`

x194019501960197019801990
y172027323638

Gauss's backward difference interpolation method to find solution

`h=1950-1940=10`

Taking `x_0=1970` then `p=(x-x_0)/h=(x-1970)/10`

Now the central difference table is
`x``p=(x-1970)/10``y``Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y`
1940-317
3
1950-2204
7-6
1960-127-27
51-9
1970032-1-2
4-1
1980136-2
2
1990238


`x = 1976`

`p = (x - x_0)/h = (1976 - 1970)/10 = 0.6`

`y_0=32, Delta y_(-1)=5,Delta^2y_(-1)=-1,Delta^3y_(-2)=1,Delta^4y_(-2)=-2,Delta^5y_(-3)=-9`

Gauss's backward interpolation formula is
`y_p=y_0+p Delta y_(-1) + ((p + 1)p)/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-2) + ((p + 2)(p + 1)p(p - 1))/(4!) * Delta^4y_(-2) + ((p + 2)(p + 1)p(p - 1)(p - 2))/(5!) * Delta^5y_(-3)`

`y_(0.6) = 32 + (0.6)(5) + ((0.6 + 1)(0.6))/(2) * (-1) + ((0.6 + 1)(0.6)(0.6 - 1))/(6) * (1) + ((0.6 + 2)(0.6 + 1)(0.6)(0.6 - 1))/(24) * (-2) + ((0.6 + 2)(0.6 + 1)(0.6)(0.6 - 1)(0.6 - 2))/(120) * (-9)`

`y_(0.6)=32 +3 -0.48 -0.064 +0.0832 -0.104832`

`y_(0.6)=34.43437`


Solution of Gauss's backward interpolation is `y(1976) = 34.43437`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Gauss Forward formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.