Home > Numerical methods calculators > Numerical Interpolation using Gauss Forward formula example

6. Gauss Forward formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

5. Lagrange's Inverse Interpolation formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Gauss Forward formula
`p = (x - x_0)/h`
`y_p=y_0+p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-1) + ((p + 1)p(p - 1)(p - 2))/(4!) * Delta^4y_(-2) + ...`

Examples
1. Find Solution using Gauss Forward formula
xf(x)
11
2-1
31
4-1
51

x = 3.5


Solution:
The value of table for `x` and `y`

x12345
y1-11-11

Gauss's forward method to find solution

`h=2-1=1`

Taking `x_0=3` then `p=(x-x_0)/h=(x-3)/1`

Now the central difference table is
`x``p=(x-3)/1``y``Deltay``Delta^2y``Delta^3y``Delta^4y`
1-21
-2
2-1-14
2-8
301-416
-28
41-14
2
521


`x = 3.5`

`p = (x - x_0)/h = (3.5 - 3)/1 = 0.5`

`y_0=1, Delta y_0=-2,Delta^2y_(-1)=-4,Delta^3y_(-1)=8,Delta^4y_(-2)=16`

Gauss's forward interpolation formula is
`y_p=y_0+p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-1) + ((p + 1)p(p - 1)(p - 2))/(4!) * Delta^4y_(-2)`

`y_(0.5) = 1 + (0.5)(-2) + ((0.5)(0.5 - 1))/(2) * (-4) + ((0.5 + 1)(0.5)(0.5 - 1))/(6) * (8) + ((0.5 + 1)(0.5)(0.5 - 1)(0.5 - 2))/(24) * (16)`

`y_(0.5)=1 -1 +0.5 -0.5 +0.375`

`y_(0.5)=0.375`


Solution of Gauss's forward interpolation is `y(3.5) = 0.375`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Lagrange's Inverse Interpolation formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.