Home > Numerical methods calculators > Numerical Interpolation using Lagrange's Interpolation formula example

4. Lagrange's Interpolation formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





2. Find Solution using Lagrange's Interpolation formula
xf(x)
20.69315
2.50.91629
31.09861

x = 2.7


Solution:
The value of table for `x` and `y`

x22.53
y0.693150.916291.09861

Lagrange's Interpolating Polynomial
The value of x at you want to find `P_n(x) : x = 2.7`

Lagrange's formula is
`f(x) = ((x - x_1)(x - x_2))/((x_0 - x_1)(x_0 - x_2)) xx y_0 + ((x - x_0)(x - x_2))/((x_1 - x_0)(x_1 - x_2)) xx y_1 + ((x - x_0)(x - x_1))/((x_2 - x_0)(x_2 - x_1)) xx y_2`

`y(2.7) = ((2.7 - 2.5)(2.7 - 3))/((2 - 2.5)(2 - 3)) xx 0.69315 + ((2.7 - 2)(2.7 - 3))/((2.5 - 2)(2.5 - 3)) xx 0.91629 + ((2.7 - 2)(2.7 - 2.5))/((3 - 2)(3 - 2.5)) xx 1.09861`

`y(2.7) = ((0.2)(-0.3))/((-0.5)(-1)) xx 0.69315 + ((0.7)(-0.3))/((0.5)(-0.5)) xx 0.91629 + ((0.7)(0.2))/((1)(0.5)) xx 1.09861`

`y(2.7) = (-0.06)/(0.5) xx 0.69315 + (-0.21)/(-0.25) xx 0.91629 + (0.14)/(0.5) xx 1.09861`

`y(2.7) = 0.994116`


Solution of the polynomial at point `2.7` is `y(2.7) = 0.994116`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.