Home > Numerical methods calculators > Numerical Interpolation using Lagrange's Inverse Interpolation formula example

5. Lagrange's Inverse Interpolation formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

4. Lagrange's Interpolation formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Lagrange's Inverse Interpolation formula
`x(y) = ((y - y_1)(y - y_2)...(y - y_n))/((y_0 - y_1)(y_0 - y_2)...(y_0 - y_n)) xx x_0 + ((y - y_0)(y - y_2)...(y - y_n))/((y_1 - y_0)(y_1 - y_2)...(y_1 - y_n)) xx x_1` `+ ((y - y_0)(y - y_1)(y - y_3)...(y - y_n))/((y_2 - y_0)(y_2 - y_1)(y_2 - y_3)...(y_2 - y_n)) xx x_2 + ... + ((y - y_0)(y - y_1)...(y - y_(n-1)))/((y_n - y_0)(y_n - y_1)...(y_n - y_(n-1))) xx x_n`

Examples
1. Find Solution using Lagrange's Inverse Interpolation formula
xf(x)
1683
1207
729
6310

x = 6
Finding f(2)


Solution:
The value of table for `x` and `y`

x1681207263
y37910

Lagrange's Inverse Interpolating Polynomial
The value of y at you want to find `P_n(y) : y = 6`

Lagrange's Inverse Interpolation formula is
`f(y) = ((y - y_1)(y - y_2)(y - y_3))/((y_0 - y_1)(y_0 - y_2)(y_0 - y_3)) xx x_0 + ((y - y_0)(y - y_2)(y - y_3))/((y_1 - y_0)(y_1 - y_2)(y_1 - y_3)) xx x_1 + ((y - y_0)(y - y_1)(y - y_3))/((y_2 - y_0)(y_2 - y_1)(y_2 - y_3)) xx x_2 + ((y - y_0)(y - y_1)(y - y_2))/((y_3 - y_0)(y_3 - y_1)(y_3 - y_2)) xx x_3`

`x(6) = ((6 - 7)(6 - 9)(6 - 10))/((3 - 7)(3 - 9)(3 - 10)) xx 168 + ((6 - 3)(6 - 9)(6 - 10))/((7 - 3)(7 - 9)(7 - 10)) xx 120 + ((6 - 3)(6 - 7)(6 - 10))/((9 - 3)(9 - 7)(9 - 10)) xx 72 + ((6 - 3)(6 - 7)(6 - 9))/((10 - 3)(10 - 7)(10 - 9)) xx 63`

`x(6) = ((-1)(-3)(-4))/((-4)(-6)(-7)) xx 168 + ((3)(-3)(-4))/((4)(-2)(-3)) xx 120 + ((3)(-1)(-4))/((6)(2)(-1)) xx 72 + ((3)(-1)(-3))/((7)(3)(1)) xx 63`

`x(6) = 0.0714 xx 168 + 1.5 xx 120 + (-1) xx 72 + 0.4286 xx 63`

`x(6) = 147`


Solution of the polynomial at point `6` is `x(6) = 147`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Lagrange's Interpolation formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.