Home > Matrix & Vector calculators > Determinant of a matrix example

6. Matrix Determinant example ( Enter your problem )
  1. Definition and Examples
  2. Example-2
Other related methods
  1. Addition of two matrix
  2. Multiplication of two matrix
  3. Division of two matrix
  4. Power of a matrix
  5. Transpose of a matrix
  6. Determinant of a matrix
  7. Adjoint of a matrix
  8. Inverse of a matrix
  9. Prove that any two matrix expression is equal or not
  10. Minor of a matrix
  11. Cofactor of a matrix
  12. Trace of a matrix

5. Transpose of a matrix
(Previous method)
2. Example-2
(Next example)

1. Definition and Examples





1. Determinant of a square matrix

If `A=[[a_11,a_12,a_13],[a_21,a_22,a_23],[a_31,a_32,a_33]]` then `|[a_11,a_12,a_13],[a_21,a_22,a_23],[a_31,a_32,a_33]|` is called a determinant of matrix A and it is denoted by `|A|`
Determinant of `2 xx 2` matrix
`|A|=|[a,b],[c,d]| = ad - bc`
Determinant of `3 xx 3` matrix
`|A|=|[a,b,c],[d,e,f],[g,h,i]| = a|[e,f],[h,k]| - b |[d,f],[g,k]| + c |[d,e],[g,h]|`
Example
1. Find `| A |` ...
`A=[[5,6],[1,2]]`


Solution:
`|A|` = 
 `5`  `6` 
 `1`  `2` 


`=5 × 2 - 6 × 1`

`=10 -6`

`=4`


2. Find `| A |` ...
`A=[[3,1,1],[-1,2,1],[1,1,1]]`


Solution:
`|A|` = 
 `3`  `1`  `1` 
 `-1`  `2`  `1` 
 `1`  `1`  `1` 


 =
 `3` × 
 `2`  `1` 
 `1`  `1` 
 `-1` × 
 `-1`  `1` 
 `1`  `1` 
 `+1` × 
 `-1`  `2` 
 `1`  `1` 


`=3 xx (2 × 1 - 1 × 1) -1 xx (-1 × 1 - 1 × 1) +1 xx (-1 × 1 - 2 × 1)`

`=3 xx (2 -1) -1 xx (-1 -1) +1 xx (-1 -2)`

`=3 xx (1) -1 xx (-2) +1 xx (-3)`

`= 3 +2 -3`

`=2`


3. Find `| B |` ...
`B=[[2,3,1],[0,5,6],[1,1,2]]`


Solution:
`|B|` = 
 `2`  `3`  `1` 
 `0`  `5`  `6` 
 `1`  `1`  `2` 


 =
 `2` × 
 `5`  `6` 
 `1`  `2` 
 `-3` × 
 `0`  `6` 
 `1`  `2` 
 `+1` × 
 `0`  `5` 
 `1`  `1` 


`=2 xx (5 × 2 - 6 × 1) -3 xx (0 × 2 - 6 × 1) +1 xx (0 × 1 - 5 × 1)`

`=2 xx (10 -6) -3 xx (0 -6) +1 xx (0 -5)`

`=2 xx (4) - -3 xx (-6) +1 xx (-5)`

`= 8 +18 -5`

`=21`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Transpose of a matrix
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.