Inverse of a matrix
If `A` is a non singular square matrix then its inverse is
`A^-1 = ("Adj"A)/|A|`
Examples
1. Find `A^-1` ...
`A=[[3,1,1],[-1,2,1],[1,1,1]]`
Solution:
`|A|` | = | | `3` | `1` | `1` | | | `-1` | `2` | `1` | | | `1` | `1` | `1` | |
|
`=3 xx (2 × 1 - 1 × 1) -1 xx (-1 × 1 - 1 × 1) +1 xx (-1 × 1 - 2 × 1)`
`=3 xx (2 -1) -1 xx (-1 -1) +1 xx (-1 -2)`
`=3 xx (1) - -1 xx (-2) +1 xx (-3)`
`= 3 +2 -3`
`=2`
`Adj(A)` | = | Adj | | `3` | `1` | `1` | | | `-1` | `2` | `1` | | | `1` | `1` | `1` | |
|
|
= | | `+(2 × 1 - 1 × 1)` | `-(-1 × 1 - 1 × 1)` | `+(-1 × 1 - 2 × 1)` | | | `-(1 × 1 - 1 × 1)` | `+(3 × 1 - 1 × 1)` | `-(3 × 1 - 1 × 1)` | | | `+(1 × 1 - 1 × 2)` | `-(3 × 1 - 1 × (-1))` | `+(3 × 2 - 1 × (-1))` | |
| T |
|
= | | `+(2 -1)` | `-(-1 -1)` | `+(-1 -2)` | | | `-(1 -1)` | `+(3 -1)` | `-(3 -1)` | | | `+(1 -2)` | `-(3 +1)` | `+(6 +1)` | |
| T |
|
= | | `1` | `2` | `-3` | | | `0` | `2` | `-2` | | | `-1` | `-4` | `7` | |
| T |
|
= | | `1` | `0` | `-1` | | | `2` | `2` | `-4` | | | `-3` | `-2` | `7` | |
|
`"Now, "A^(-1)=1/|A| × Adj(A)`
= | `1/(2)` × | | `1` | `0` | `-1` | | | `2` | `2` | `-4` | | | `-3` | `-2` | `7` | |
|
= | | `1/2` | `0` | `-1/2` | | | `1` | `1` | `-2` | | | `-3/2` | `-1` | `7/2` | |
|
2. Find `B^-1` ...
`B=[[2,3,1],[0,5,6],[1,1,2]]`
Solution:
`|B|` | = | | `2` | `3` | `1` | | | `0` | `5` | `6` | | | `1` | `1` | `2` | |
|
`=2 xx (5 × 2 - 6 × 1) -3 xx (0 × 2 - 6 × 1) +1 xx (0 × 1 - 5 × 1)`
`=2 xx (10 -6) -3 xx (0 -6) +1 xx (0 -5)`
`=2 xx (4) - -3 xx (-6) +1 xx (-5)`
`= 8 +18 -5`
`=21`
`Adj(B)` | = | Adj | | `2` | `3` | `1` | | | `0` | `5` | `6` | | | `1` | `1` | `2` | |
|
|
= | | `+(5 × 2 - 6 × 1)` | `-(0 × 2 - 6 × 1)` | `+(0 × 1 - 5 × 1)` | | | `-(3 × 2 - 1 × 1)` | `+(2 × 2 - 1 × 1)` | `-(2 × 1 - 3 × 1)` | | | `+(3 × 6 - 1 × 5)` | `-(2 × 6 - 1 × 0)` | `+(2 × 5 - 3 × 0)` | |
| T |
|
= | | `+(10 -6)` | `-(0 -6)` | `+(0 -5)` | | | `-(6 -1)` | `+(4 -1)` | `-(2 -3)` | | | `+(18 -5)` | `-(12 +0)` | `+(10 +0)` | |
| T |
|
= | | `4` | `6` | `-5` | | | `-5` | `3` | `1` | | | `13` | `-12` | `10` | |
| T |
|
= | | `4` | `-5` | `13` | | | `6` | `3` | `-12` | | | `-5` | `1` | `10` | |
|
`"Now, "B^(-1)=1/|B| × Adj(B)`
= | `1/(21)` × | | `4` | `-5` | `13` | | | `6` | `3` | `-12` | | | `-5` | `1` | `10` | |
|
= | | `4/21` | `-5/21` | `13/21` | | | `2/7` | `1/7` | `-4/7` | | | `-5/21` | `1/21` | `10/21` | |
|
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then