|
Definition and examples
|
Matrix operations
|
Matrix Operation
|
Matrix Cofactors calculator |
|
Matrix A :
X
|
|
- `[[1,0,0],[0,1,0],[0,0,1]]`
- `[[2,3,1],[0,5,6],[1,1,2]]`
- `[[2,1,-1],[1,0,-1],[1,1,2]]`
- `[[3,1,1],[-1,2,1],[1,1,1]]`
- `[[5,6,1],[0,2,3],[1,1,2]]`
- `[[5,-1,1],[-2,3,4],[1,1,7]]`
- `[[2,3,-1],[3,2,1],[1,-5,3]]`
- `[[1,1,1],[2,-1,-1],[1,-1,1]]`
- `[[1,1,1],[1,2,3],[1,4,9]]`
|
|
|
Matrix B :
X
|
|
- `[[1,0,0],[0,1,0],[0,0,1]]`
- `[[2,3,1],[0,5,6],[1,1,2]]`
- `[[2,1,-1],[1,0,-1],[1,1,2]]`
- `[[3,1,1],[-1,2,1],[1,1,1]]`
- `[[5,6,1],[0,2,3],[1,1,2]]`
- `[[5,-1,1],[-2,3,4],[1,1,7]]`
- `[[2,3,-1],[3,2,1],[1,-5,3]]`
- `[[1,1,1],[2,-1,-1],[1,-1,1]]`
- `[[1,1,1],[1,2,3],[1,4,9]]`
|
|
|
Matrix C :
X
|
|
- `[[1,0,0],[0,1,0],[0,0,1]]`
- `[[2,3,1],[0,5,6],[1,1,2]]`
- `[[2,1,-1],[1,0,-1],[1,1,2]]`
- `[[3,1,1],[-1,2,1],[1,1,1]]`
- `[[5,6,1],[0,2,3],[1,1,2]]`
- `[[5,-1,1],[-2,3,4],[1,1,7]]`
- `[[2,3,-1],[3,2,1],[1,-5,3]]`
- `[[1,1,1],[2,-1,-1],[1,-1,1]]`
- `[[1,1,1],[1,2,3],[1,4,9]]`
|
|
|
|
|
|
|
|
|
|
Mode =
|
Decimal Place =
|
|
To solve simultaneous equations, enter B/A or AX=B or Use this link
Inverse Matrix method (for answer in better way)
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Matrix Cofactors calculator
|
1. `[[2,3,1],[0,5,6],[1,1,2]]` 2. `[[2,1,-1],[1,0,-1],[1,1,2]]` 3. `[[3,1,1],[-1,2,1],[1,1,1]]` 4. `[[5,6,1],[0,2,3],[1,1,2]]`
|
Example1. Find `"Cofactor"(A)` ... `A=[[3,1,1],[-1,2,1],[1,1,1]]`Solution:`COFACTOR(A)` | = | `COFACTOR` | | `3` | `1` | `1` | | | `-1` | `2` | `1` | | | `1` | `1` | `1` | |
|
|
= | | `+(2 × 1 - 1 × 1)` | `-(-1 × 1 - 1 × 1)` | `+(-1 × 1 - 2 × 1)` | | | `-(1 × 1 - 1 × 1)` | `+(3 × 1 - 1 × 1)` | `-(3 × 1 - 1 × 1)` | | | `+(1 × 1 - 1 × 2)` | `-(3 × 1 - 1 × (-1))` | `+(3 × 2 - 1 × (-1))` | |
|
= | | `+(2 -1)` | `-(-1 -1)` | `+(-1 -2)` | | | `-(1 -1)` | `+(3 -1)` | `-(3 -1)` | | | `+(1 -2)` | `-(3 +1)` | `+(6 +1)` | |
|
= | | `1` | `2` | `-3` | | | `0` | `2` | `-2` | | | `-1` | `-4` | `7` | |
|
|
|
|
|
|