Home

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution will be displayed step by step (In 2 parts)
Solution
Find Adams bashforth predictor method y'=(x+y)/2,{{0,2},{0.5,2.636},{1,3.595},{1.5,4.968}},x=2

Solution:
Your problem `->` Adams bashforth predictor method y'=(x+y)/2,{{0,2},{0.5,2.636},{1,3.595},{1.5,4.968}},x=2


`y'=(x+y)/2`

Adam's Bashforth Predictor formula is
`y_(n+1,p) = y_n + h/24 (55y'_(n) - 59y'_(n-1) + 37y'_(n-2) - 9y'_(n-3))`

putting `n=3`, we get

`y_(4,p)=y_3 + h/24 (55y'_(3) - 59y'_2 + 37y'_1 - 9y'_0) ->(2)`

We have given that
`x_0=0,x_1=0.5,x_2=1,x_3=1.5`

`y_0=2,y_1=2.636,y_2=3.595,y_3=4.968`

`y'=(x+y)/2`

`y'_0=(x+y)/2=1` (where `x=0,y=2`)

`y'_1=(x+y)/2=1.568` (where `x=0.5,y=2.636`)

`y'_2=(x+y)/2=2.2975` (where `x=1,y=3.595`)

`y'_3=(x+y)/2=3.234` (where `x=1.5,y=4.968`)






Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends, if solutions are helpful to you.
 
Copyright © 2019. All rights reserved. Terms, Privacy