Home > Statistical Methods calculators > Mean, Median and Mode for mixed data calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find median {{1,3},{2,4},{5,10},{6-10,23},{10-20,20},{20-30,20},{30-50,15},{50-70,3},{70-100,2}} [ Calculator, Method and examples ]

Solution:
Your problem `->` median {{1,3},{2,4},{5,10},{6-10,23},{10-20,20},{20-30,20},{30-50,15},{50-70,3},{70-100,2}}


Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(6)`
13 3 `3=0+3`
`(6)=`Previous `(6)+(2)`
24 7 `7=3+4`
`(6)=`Previous `(6)+(2)`
510 17 `17=7+10`
`(6)=`Previous `(6)+(2)`
6 - 1023 40 `40=17+23`
`(6)=`Previous `(6)+(2)`
10 - 2020 60 `60=40+20`
`(6)=`Previous `(6)+(2)`
20 - 3020 80 `80=60+20`
`(6)=`Previous `(6)+(2)`
30 - 5015 95 `95=80+15`
`(6)=`Previous `(6)+(2)`
50 - 703 98 `98=95+3`
`(6)=`Previous `(6)+(2)`
70 - 1002 100 `100=98+2`
`(6)=`Previous `(6)+(2)`
---------
`n = 100`-----


To find Median Class
= value of `(n/2)^(th)` observation

= value of `(100/2)^(th)` observation

= value of `50^(th)` observation

From the column of cumulative frequency `cf`, we find that the `50^(th)` observation lies in the class `10 - 20`.

`:.` The median class is `10 - 20`.

Now,
`:. L = `lower boundary point of median class `=10`

`:. n = `Total frequency `=100`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=20`

`:. c = `class length of median class `=10`

Median `M = L + (n/2 - cf)/f * c`

`=10 + (50 - 40)/20 * 10`

`=10 + (10)/20 * 10`

`=10 + 5`

`=15`








Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more