Home > Statistical Methods calculators > Mean, Median and Mode for grouped data calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find median {{10-20,15},{20-30,25},{30-40,20},{40-50,12},{50-60,8}}

Solution:
Your problem `->` median {{10-20,15},{20-30,25},{30-40,20},{40-50,12},{50-60,8}}


Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(7)`
10 - 2015 15 `15=0+15`
`(7)=`Previous `(7)+(2)`
20 - 3025 40 `40=15+25`
`(7)=`Previous `(7)+(2)`
30 - 4020 60 `60=40+20`
`(7)=`Previous `(7)+(2)`
40 - 5012 72 `72=60+12`
`(7)=`Previous `(7)+(2)`
50 - 608 80 `80=72+8`
`(7)=`Previous `(7)+(2)`
---------
`n = 80`-----


To find Median Class
= value of `(n/2)^(th)` observation

= value of `(80/2)^(th)` observation

= value of `40^(th)` observation

From the column of cumulative frequency `cf`, we find that the `40^(th)` observation lies in the class `30 - 40`.

`:.` The median class is `30 - 40`.

Now,
`:. L = `lower boundary point of median class `=30`

`:. n = `Total frequency `=80`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=20`

`:. c = `class length of median class `=10`

Median `M = L + (n/2 - cf)/f * c`

`=30 + (40 - 40)/20 * 10`

`=30 + (0)/20 * 10`

`=30 + 0`

`=30`








Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends, if solutions are helpful to you.
 
Copyright © 2019. All rights reserved. Terms, Privacy