Home > Matrix Algebra calculators > QR Decomposition (Householder Method) calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find qr decomposition house holder [[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]

Solution:
Your problem `->` qr decomposition house holder [[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]


Here `A` = 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`


`A_1` = 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`


`a_1` = 
`1`
`1`
`1`
`1`


`||a_1||=sqrt(1^2+1^2+1^2+1^2)=sqrt(4)=2`

`v_1=a_1-sign(a_(11))||a_1||e_1` = 
`1`
`1`
`1`
`1`
 - 2 `xx` 
`1`
`0`
`0`
`0`
 = 
`-1`
`1`
`1`
`1`


`H_1=I - 2 *(v_1*v_1^T)/(v_1^T*v_1)` = 
1000
0100
0010
0001
`-``2/4``*`
`-1`
`1`
`1`
`1`
`*`
[`-1``1``1``1`]
 = 
`1/2``1/2``1/2``1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``-1/2``1/2``-1/2`
`1/2``-1/2``-1/2``1/2`


`H_1 * A_1` = 
`1/2``1/2``1/2``1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``-1/2``1/2``-1/2`
`1/2``-1/2``-1/2``1/2`
 `xx` 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`
 = 
`2``3``2`
`0``0``0`
`0``0``4`
`0``-5``2`




Now removing 1st row and 1st column, we get
`A_2` = 
`0``0`
`0``4`
`-5``2`


`a_2` = 
`0`
`0`
`-5`


`||a_2||=sqrt(0^2+0^2+(-5)^2)=sqrt(25)=5`

`v_2=a_1-sign(a_(11))||a_1||e_1` = 
`0`
`0`
`-5`
 - 5 `xx` 
`1`
`0`
`0`
 = 
`-5`
`0`
`-5`


`H_2=I - 2 *(v_1*v_1^T)/(v_1^T*v_1)` = 
100
010
001
`-``2/50``*`
`-5`
`0`
`-5`
`*`
[`-5``0``-5`]
 = 
`0``0``-1`
`0``1``0`
`-1``0``0`


`H_2 * A_2` = 
`0``0``-1`
`0``1``0`
`-1``0``0`
 `xx` 
`0``0`
`0``4`
`-5``2`
 = 
`5``-2`
`0``4`
`0``0`




Now removing 1st row and 1st column, we get
`A_3` = 
`4`
`0`




Since, `H_2H_1A=R`

`H_2H_1A=`
`1``0``0``0`
`0``0``0``-1`
`0``0``1``0`
`0``-1``0``0`
 `xx` 
`1/2``1/2``1/2``1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``-1/2``1/2``-1/2`
`1/2``-1/2``-1/2``1/2`
 `xx` 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`
 = 
`2``3``2`
`0``5``-2`
`0``0``4`
`0``0``0`
 = R


Also `A=H_1H_2R` and `A=QR`, `:.Q=H_1H_2`

`Q=H_1H_2`=
`1/2``1/2``1/2``1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``-1/2``1/2``-1/2`
`1/2``-1/2``-1/2``1/2`
 `xx` 
`1``0``0``0`
`0``0``0``-1`
`0``0``1``0`
`0``-1``0``0`
 = 
`1/2``-1/2``1/2``-1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``1/2``1/2``1/2`
`1/2``-1/2``-1/2``1/2`




checking `Q xx R = A?`

`Q xx R` = 
`1/2``-1/2``1/2``-1/2`
`1/2``1/2``-1/2``-1/2`
`1/2``1/2``1/2``1/2`
`1/2``-1/2``-1/2``1/2`
 `xx` 
`2``3``2`
`0``5``-2`
`0``0``4`
`0``0``0`
 = 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`


and `A` = 
`1``-1``4`
`1``4``-2`
`1``4``2`
`1``-1``0`







Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends, if solutions are helpful to you.
 
Copyright © 2018. All rights reserved. Terms, Privacy