|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Verifying if two functions are inverses of each other calculator
|
1. Find Range of `f:A->B`
1. `f(x)=5x+2` where `A={1<=x<5}`
2. `f(x)=|2x+1|` where `A={x in Z}`
3. `f(x)=sqrt(x)` where `A={1,4,16,36}`
4. `f(x)=(-2)^x` where `A={x in N}`
5. `f(x)=(x^2+1)/(x+1)` where `A={-2,0,2}`
2. Composite functions and Evaluating functions
1. `f(x)=2x+1`, `g(x)=x+5`. Find `fog(x)`, also evaluate at `x=2`
2. `f(x)=x+3`, `g(x)=x^2`. Find `gof(x)`
3. `f(x)=3x+1`, `g(x)=-x^2+5`. Find `gof(x)`
4. `f(x)=4x+1`, `g(x)=2x-3`. Find `gof(x)`, also evaluate at `x=2`
5. `fog(x)=(x+2)/(3x), f(x)=x-2`. Find g(2).
6. `gof(x)=1/x^2, f(x)=2+x^2`. Find g(x).
3. Find value
1. `f(x)=x(x+1)(2x+1)`. Find `f(x)-f(x-1)`
2. `f(x)=1/x`. Find `f(x+1)-f(x-1)`
3. `f(x)=x^2-x`. Find `f(x+1)-f(x)`
4. `f(x)=x^2-2^x`. Find `f(2)-f(0)`
5. `f(x)=(x^2+1)/(x^3-x+1)`. Find `f(1)-f(0)`
4. Verifying if two functions are inverses of each other
1. `f(x)=x+3,g(x)=x-3`
2. `f(x)=4x-3,g(x)=(x+3)/4`
3. `f(x)=x/(x-1),g(x)=(2x)/(2x-1)`
|
Example1. Verifying if two functions f,g are inverses of each other f(x)=x+3. g(x)=x-3.
Solution: Two functions f,g are inverses of each other only when 1. `f(g(x))=x` and 2. `g(f(x))=x`
1. Show that f(g(x))=x `f(x)=x+3`
`g(x)=x-3`
`fog(x)=?`
`f(x)=x+3, g(x)=x-3, fog(x)=?`
`fog(x)=f(g(x))`
`=f(x-3)`
`=(x-3)+3`
`=x-3+3`
`=x`
`fog(x)=x`
2. Show that g(f(x))=x `f(x)=x+3, g(x)=x-3, gof(x)=?`
`gof(x)=g(f(x))`
`=g(x+3)`
`=(x+3)-3`
`=x+3-3`
`=x`
`gof(x)=x`
Here both outputs are x, So f(x) and g(x) are inverses of each other
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
`x^3` |
x^3 |
2. |
`sqrt(x)` |
sqrt(x) |
3. |
`root(3)(x)`
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
`sin^(-1)(x)` |
asin(x) |
11. |
`cos^(-1)(x)` |
acos(x) |
12. |
`tan^(-1)(x)` |
atan(x) |
13. |
`sin^2(x)` |
sin^2(x) |
14. |
`log_y(x)` |
log(y,x) |
15. |
`log_10(x)` |
log(x) |
16. |
`log_e(x)` |
ln(x) |
17. |
`e^x` |
exp(x) or e^x |
18. |
`e^(2x)` |
exp(2x) or e^(2x) |
19. |
`oo` |
inf |
|
|
|
|
|