Home > Pre-Algebra calculators > Tables > Area formula


1. Circle
Area `(A) = pi r^2`
Circumference `(C) = 2 pi r = pi d`
Diameter `(d) = 2 r`
2. Semi-Circle
Area `(A) = 1/2 pi r^2`
Circumference `(C) = pi r = (pi d)/2`
Perimeter `(P) = pi r + 2 r`
Diameter `(d) = 2 r`
 
3. Regular Hexagon
Perimeter `(P) = 6 a`
Area `(A) = sqrt(3)/4 xx 6 xx a^2`
4. Square
Diagonal `(d) = sqrt(2) a`
Perimeter `(P) = 4a`
Area `(A) = a^2 = d^2/2`
 
5. Rectangle
Diagonal `(d) = sqrt(l^2 + b^2)`
Perimeter `(P) = 2(l+b)`
Area `(A) = l b`
6. Parallelogram
Area `(A) = ah`
Perimeter `(P) = 2a + 2b`
 
7. Rhombus
Radius `(r_1) = (d_1)/2`
Radius `(r_2) = (d_2)/2`
Side `(a) = sqrt(r_1^2 + r_2^2)`
Perimeter `(P) = 4 a`
Area `(SA) = (d_1 d_2)/2`
8. Trapezium
Area `(A) = h/2 (a + b)`
Perimeter `(P) = a + b + c + d`
 
9. Scalene Triangle
Perimeter `(P) = a+b+c`
`S = P/2 = (a+b+c)/2`
Area `(A) = sqrt(S (S - a) (S - b) (S - c))`
10. Right angle Triangle
Diagonal `(d) = sqrt(a^2 + b^2)`
Perimeter `(P) = a+b+c`
Area `(A) = 1/2(a b)`
 
11. Equilateral Triangle
Perimeter `(P) = 3 a`
Area `(A) = sqrt(3)/4 a^2`
12. Isoceles Triangle
Height `(h) = sqrt(a^2 - b^2/4)`
Perimeter `(P) = 2 a + b`
Area `(A) = (b h)/2`
 
13. Sector Segment
Length of the arc `= l = (pi r theta)/180`
Area of a minor sector `= (pi r^2 theta)/360`


I know that for a sector & segment Radius = 10 and angle of measure = 180 . From this find out length of arc of the sector & segment.

`"Here "r = 10" and " theta = 180" (Given)"`

`"Length of the arc " = l = (pi r theta)/180`

`=(22/7 * 10 * 180)/180`

`=31.4286`


`"Area of a minor sector "= (pi r^2 theta)/360`

`=(22/7 * 10^2 * 180)/360`

`=157.1429`

Share with your friends, if solutions are helpful to you.
 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more