|
|
Code is changed on 22.07.2025, Now it also works for Complex Number.
For wrong or incomplete solution, please submit the feedback form.
So, I will try my best to improve it soon.
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
LU Decomposition using Gauss Elimination method of Matrix calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]`
3. `[[3,2,4],[2,0,2],[4,2,3]]`
4. `[[1,1,1],[-1,-3,-3],[2,4,4]]`
5. `[[2,3],[4,10]]`
6. `[[5,1],[4,2]]`
|
Example1. Find LU Decomposition using Gauss Elimination method of Matrix ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:`LU` decomposition : If we have a square matrix A, then an upper triangular matrix U can be obtained without pivoting under Gaussian Elimination method, and there exists lower triangular matrix L such that A=LU. Here `A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Using Gaussian Elimination method `R_2 larr R_2-` `(-0.75)``xx R_1` `[:.L_(2,1)=color{blue}{-0.75}]` = | | `8` | `-6` | `2` | | | `0` | `2.5` | `-2.5` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-` `(0.25)``xx R_1` `[:.L_(3,1)=color{blue}{0.25}]` = | | `8` | `-6` | `2` | | | `0` | `2.5` | `-2.5` | | | `0` | `-2.5` | `2.5` | |
|
`R_3 larr R_3-` `(-1)``xx R_2` `[:.L_(3,2)=color{blue}{-1}]` = | | `8` | `-6` | `2` | | | `0` | `2.5` | `-2.5` | | | `0` | `0` | `0` | |
|
`:.U` | = | | `8` | `-6` | `2` | | | `0` | `2.5` | `-2.5` | | | `0` | `0` | `0` | |
|
`L` is just made up of the multipliers we used in Gaussian elimination with 1s on the diagonal. `:.L` | = | | `1` | `0` | `0` | | | `color{blue}{-0.75}` | `1` | `0` | | | `color{blue}{0.25}` | `color{blue}{-1}` | `1` | |
|
Now checking `A=LU` ? `LU` | = | | `1` | `0` | `0` | | | `-0.75` | `1` | `0` | | | `0.25` | `-1` | `1` | |
| `xx` | | `8` | `-6` | `2` | | | `0` | `2.5` | `-2.5` | | | `0` | `0` | `0` | |
| = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
And `A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Solution is possible.
|
|
|
|
|