Home > Numerical methods calculators > Halley's method calculator

Method and examples
Method
root of an equation using Halley's method
f(x) =
Find Any Root Initial solution x0

For next step calucation, use previous X value
Print Digit =
Trigonometry Function Mode =
Solution correct upto digit =
SolutionHelpInput functions
Halley's method calculator to find a real root an equation
1. f(x) = 2x^3-2x-5
2. f(x) = x^3-x-1
3. f(x) = x^3+2x^2+x-1
4. f(x) = x^3-2x-5
5. f(x) = x^3-x+1
6. f(x) = cos(x)
7. f(x) = 2*cos(x)-x
8. f(x) = 2^x-x-1.7


Example
1. Find a root of an equation f(x)=x^3-x-1 using Halley's method

Solution:
Here x^3-x-1=0

Let f(x) = x^3-x-1

d/(dx)(x^3-x-1)=3x^2-1


d/(dx)(x^3-x-1)

=d/(dx)(x^3)-d/(dx)(x)-d/(dx)(1)

=3x^2-1-0

=3x^2-1


d/(dx)(3x^2-1)=6x


d/(dx)(3x^2-1)

=d/(dx)(3x^2)-d/(dx)(1)

=6x-0

=6x


:. f'(x) = 3x^2-1

:. f ''(x) = 6x

Here
x012
f(x)-1-15



Here f(1) = -1 < 0 and f(2) = 5 > 0

:. Root lies between 1 and 2

x_0 = (1 + 2)/2 = 1.5

x_0 = 1.5


1^(st) iteration :

f(x_0)=f(1.5)=1.5^3-1.5-1=0.875

f'(x_0)=f'(1.5)=3*1.5^2-1=5.75

f''(x_0)=f'(1.5)=6*1.5=9

x_1=x_0-(2*f(x_0)*f'(x_0))/(2*f'(x_0)^2-f(x_0)*f''(x_0))

x_1=1.5-(2xx0.875xx5.75)/(2xx(5.75)^2-(5.75)xx(9))

x_1=1.3273


2^(nd) iteration :

f(x_1)=f(1.3273)=1.3273^3-1.3273-1=0.0108

f'(x_1)=f'(1.3273)=3*1.3273^2-1=4.2848

f''(x_1)=f'(1.3273)=6*1.3273=7.9635

x_2=x_1-(2*f(x_1)*f'(x_1))/(2*f'(x_1)^2-f(x_1)*f''(x_1))

x_2=1.3273-(2xx0.0108xx4.2848)/(2xx(4.2848)^2-(4.2848)xx(7.9635))

x_2=1.3247


3^(rd) iteration :

f(x_2)=f(1.3247)=1.3247^3-1.3247-1=0

f'(x_2)=f'(1.3247)=3*1.3247^2-1=4.2646

f''(x_2)=f'(1.3247)=6*1.3247=7.9483

x_3=x_2-(2*f(x_2)*f'(x_2))/(2*f'(x_2)^2-f(x_2)*f''(x_2))

x_3=1.3247-(2xx0xx4.2646)/(2xx(4.2646)^2-(4.2646)xx(7.9483))

x_3=1.3247


Approximate root of the equation x^3-x-1=0 using Halleys method is 1.3247 (After 3 iterations)

nx_0f(x_0)f'(x_0)f''(x_0)x_1Update
11.50.8755.7591.3273x_0 = x_1
21.32730.01084.28487.96351.3247x_0 = x_1
31.324704.26467.94831.3247x_0 = x_1






Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.